前言:我們精心挑選了數篇優質石油化工論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
(1)操作室和機柜室應留有20%的擴展空間(定量要求)。(2)操作室面積每增加一個操作站,面積增加5~8m2。(老規范為6~10m2)。(3)成排機柜之間間距為1.6~2.0m(老規范為1.5~2.0m),機柜距墻(柱)間距為1.6~2.5m(老規范為1.5~2.0m),最小間距要求增大。(4)控制室建筑物耐火等級應為一級(老規范為二級)。(5)活動地板設計均布荷載不應小于23000N/m2(老規范為5000N/m2),活動地板荷載增大很多,更安全了。(6)操作室、工程師室凈高不宜小于3.0m,機柜室不宜小于2.8m(老規范全部要求為2.8~3.3m),新規范沒有對上限進行規定,設計靈活性更大了。(7)電纜穿墻入口宜采用專用的電纜穿墻密封模塊,并滿足抗爆、防火、防水、防塵要求。當條件受限,采用電纜溝進線方式時,電纜入口處洞底標高應高于溝底標高0.3m以上,應采取防水密封措施,室外溝底應有排水設施,并且電纜穿墻入口處的室外地面區域宜設置保護圍堰(基礎墻體洞口采用防火材料密封,溝內沖砂。不得在室內地面以上的外墻上開設電纜進線洞口)。(8)控制室的空調引風口、室外門的門斗處、電纜溝和電纜橋架進入建筑物的洞口處,需要時宜設置可燃氣體和有毒氣體檢測器。(9)抗爆結構的控制室設置無線通信系統時,應設置無線信號增強設施,以保證與外界的正常通信。
2石油化工控制室抗爆設計規范
(1)抗爆控制室宜布置在工藝裝置的一側,四周不應同時布置甲、乙類裝置,且布置控制室的場地不應低于相鄰裝置區的地坪。(2)抗爆控制室應獨立設置,不得與非抗爆建筑物合并建造。(3)抗爆控制室應至少在兩個方向設置人員的安全出口,且不得直接面向甲、乙類工藝裝置。(4)抗爆控制室建筑平面宜為矩形布置,層數宜為一層(不應超過兩層)。(5)抗爆控制室宜采用現澆鋼筋混凝土結構。(6)在人員通道外門的室內側,應設置隔離前室。(7)活動地板下地面以上(即活動地板與室內基礎地面之間)的外墻上不得開設電纜進線洞口。基礎墻體洞口應采取封堵措施,并應滿足抗爆要求。(8)抗爆控制室的重要房間、一般房間的空調系統宜分開設置。(9)重要房間空調設備的啟停及故障報警信號應引至DCS。
3石油化工儀表系統防雷設計規范
(1)控制室建筑物應按GB50057第一類防雷建筑物的規定,采取防雷措施。老規范要求為二級。(2)儀表系統設備的安裝位置距建筑物外墻的內壁距離應大于1.5m。對于抗爆結構建筑物,儀表系統設備的安裝位置距建筑物外墻的內壁距離應大于1.0m。
4結束語
1.項目選取缺乏適應性
專業核心課程項目的選取大多來源于大型石化公司生產崗位,校內的生產實訓裝置與大型石化公司生產一線裝置相比較,差距太大。導致工作任務項目化在實施過程中難度較大,有很多任務根本無法實施,最終導致項目化專業核心課程又回到了傳統的授課模式。
2.專業教師缺乏實踐性
高等職業教育要求教師具備“雙師”素質,并不是拿到了“高級工證”或“技師證”就屬于“雙師”型教師。學院石油化工生產技術專業教師的結構不合理,老教師具有一定的企業生產經驗,但教育理念過于傳統。青年教師學歷層次較高,專業理論功底較扎實,但由于從教時間短,又缺乏實踐操作經驗和實踐技能。絕大部分教師對教育教學理論了解不深,對職業教育教學規律把握不準,對教育教學技藝應用不夠熟練。
3.企業參與度不足
對學生生產實踐能力的培養,只是基于企業,而企業本身并沒有較好地參加到學生實踐能力培養中來。目前的校企合作只局限于把企業的生產能手、技能專家等召集到一起討論課程的開發,往往忽略了課程的實施環節。聘請的企業兼職教師并沒有真正參與到教學當中去。另外企業作為“校企合作”伙伴,對項目化教學的支持也不夠。有些任務的實施是需要在企業生產一線進行的,但往往由于客觀原因導致學生進不了工廠。
4.學生缺乏社會責任感
化工專業畢業生的就業崗位大多需要倒班,有些工廠離市區還很遠。一些畢業生下不去、扎不深、留不住、難干好,跳槽現象較嚴重。
二、創新人才培養模式的思考
1.職業崗位分析
從近幾年的石油化工生產技術專業畢業生的就業情況來看,畢業生的就業崗位有6類:一是生產一線的操作崗位。從事化工生產的操作、調試、運行與維護,這類人員占調查人數的30%。二是生產一線的技術崗位。從事化工產品的質量監督與控制等,這類人員占調查人數的40%。三是生產管理崗位。從事生產組織、技術指導和管理工作,如,工作在企業或公司的計劃科、生產科、企管辦等,這類人員占調查人數的15%。四是產品的銷售、售后的技術服務等崗位。這類人員占調查人數的5%。五是產品的開發、科研、制圖等工作崗位。這類人員占調查人數的5%。六是行政管理和個體、其他等崗位。這類人員占調查人數的5%。以上調查結果表明,高職高專石油化工生產技術專業是培養生產、管理、服務一線需要的、具有綜合能力和全面素質的技術技能型人才。畢業后,學生主要從事成熟技術與管理規范的相關工作。如,操作與維修人員、工藝技術人員和管理人員等。從學院對2011屆和2012屆畢業生進行調查的結果顯示,畢業生認為,本專業最需要改進的地方是“實習和實踐環節不夠”。這可以看做是社會對高職高專化工專門人才規格要求的直接反應。
2.職業能力分析
職業能力是確定專業培養目標的依據,良好的職業道德和職業素質是學生未來做好所從事工作的前提和基礎,沒有良好的職業道德和職業素質不可能做好職業工作。化工行業對高職石油化工生產技術專業人才的職業能力要求包含:操作能力、認知能力、表達能力及其他的相關能力。(1)操作能力是履行崗位職責的動手能力。包括:崗位需要的職業技能。如,化工儀表、儀器的操作及使用和計算機的操作等。基本的實驗能力及設計能力,要求理解石油化工生產技術工作的內容要求和操作程序,掌握應知應會的職業技術規范,具有處理生產中出現的事故,一定的維修化工設備的能力等。具體的項目是:化工現場的操作、工藝流程編制實施、工藝參數的調整規范、緊急事故的及時處理和技術改進等。(2)認知能力是指獲取知識和信息的能力,觀察和判斷臨場應變的能力,運用所學專業知識分析解決實踐問題的能力,以及進行技術革新和設計的創新能力等。(3)表達能力是指語言表達、文字表達和數理計算及圖表展示的能力。(4)其他相關能力主要指,組織管理能力、自我發展能力和業務交往能力及社交能力。能將工程設計轉變為工藝流程,將管理規范轉化為管理實效。具有學習小知識、接受新事物的本領,并能自覺開發、充分發揮自身優勢。能夠處理好業務關系和人際關系,善于與人合作交流,并能溝通、協調橫向關系與縱向領屬關系。
3.創新人才培養模式
結合新疆經濟發展需要大量石油化工行業的技術技能型人才的實際,構建出適合化工生產特點,符合人才培養規律的“校企共育、教訓融合”的人才培養模式,按企業崗位能力要求設置課程教學內容和教學環節。(1)優化專業核心課程體系。根據學校辦學定位,煉油化工行業對專業人才培養的要求,以職業綜合能力為核心,與行業企業合作進行基于工作過程的課程開發和設計,形成“工學結合”特色鮮明的專業核心課程體系(見圖1)。(2)教學環節安排。第一學年進行職業基本素質能力培養,在學校主要進行英語、計算機等職業素質課程和部分職業通用技術知識的學習。第二學年、第三學年安排學生開展模擬訓練和實訓,并以工學結合的方式在企業頂崗實習,實現教學、實習、就業、工作的緊密結合,提高學生化工專門技能。(3)課程教學實施過程。課程教學實施過程做到“四合一”,即理論與實踐融合,仿真模擬與實際操作結合,教室與實訓室整合,以及教師與師傅配合等。從而強化學生石油化工生產操作能力,提高學生職業素質,實現企業與學校在石油化工技術技能型人才培養中的深度融合。
三、實施效果分析
【關鍵詞】型鋼混凝土;石油化工;結構設計
1引言
型鋼混凝土結構構件具備諸多優勢,比如:受力性能好、截面尺寸小、抗震性能好、自重輕等,在石油化工結構設計中具備很優越的應用價值。在型鋼混凝土結構設計過程中,需要明確方法,遵循《型鋼混凝土組合結構技術規程》《型鋼混凝土結構設計規程》等[1]。此外,還有必要通過構件的實際受力情況,對設計進行優化。總之,由于型鋼混凝土具備很好的應用價值,所以對其應用進行探討意義重大。
2工程實例分析
在石油化工焦化裝置中,焦炭塔框架屬于核心構筑物,操作重量大,裝置支座位置及井架總高度偏高,通常情況下會有焦溜槽以及樓梯間附帶。整體結構體系較復雜,設計存在一定難度。以某煉油廠為例,其工程延遲焦化裝置焦炭塔框架屬于兩塔結構,焦炭塔單塔自重達4300kN(430t),塔外徑為9690mm,單塔最大高度為41.3m。水焦工況最大操作介質為3040t,滿焦工況焦炭量達到1150t。該工程所處場地在地面上10m位置的基本風壓為0.5kN/m2,地面粗糙度為B類,抗震設防裂度為7度,工程場地設計基本地震加速度值為0.15g[2]。從框架設計來看屬正常,但在結構空間利用方面提出了一些基本建議:(1)盡可能控制主要構件截面,使整體平面布置的需求得到有效滿足;(2)確保塔體下方具備充足的空間,能夠設置冷焦水過濾器1臺和別的附屬操作框架;(3)在塔體下方框架位置,有必要對全封閉設備操作房進行合理設置;(4)確保型鋼混凝土結構能夠合理、科學地應用,進而發揮型鋼混凝土結構的作用。
3型鋼混凝土結構的選擇以及模型的計算
3.1結構選擇
對于上述工程的焦炭塔框架設備支承部分來說,為典型的塔型設備基礎,即:兩塔板式框架聯合塔基礎,一共有3層,高為27m,縱向連續兩跨2.5m×2,橫向為單跨12.5m,出焦井架標高為27~117m,屬中心支撐鋼結構框架。
3.2模型計算
在設計中,所使用的是有限元分析軟件STRAT,在利用該軟件進行計算過程中需由經驗豐富的技術人員操作,以確保計算值的精準性。同時,在焦炭框架選擇上,選擇高聳組合結構,在建模分析過程中,有必要對下部混凝土框架和上部鋼結構的共同作用充分考慮,以此有效模擬結構的具體情況。對于完整的焦炭塔框架模型來說,需具備:①混凝土框架柱;②井架鋼結構梁;③混凝土框架梁。此外,利用厚殼單元模擬混凝土頂板,利用薄殼單元模擬設備塔體。
4荷載組合與截面設計
4.1荷載組合分析
根據相關設計規范要求,對焦炭塔框架設計需根據承載能力極限狀態最不利的效應組合加以設計。因此,兩塔結構設計時的荷載組合為:(1)正常操作工況下:1.2永久荷載+1.0×1.3×(介質荷載+活荷載)+1.4×風荷載;(2)停產之前:1.2永久荷載+1.0×1.3×(介質荷載+活荷載)+1.4×風荷載;(3)停產檢修工況下:1.2永久荷載+1.0×1.3×活荷載+1.4×風荷載;(4)地震作用下:1.2×[永久荷載+0.5×(介質荷載+活荷載)]+1.3×水平地震荷載+1.4×0.2×風荷載[3]。總之,需合理分析荷載組合,以此為進一步截面設計以及計算結果的準確性提供保障。
4.2截面設計分析
截面框架柱、框架梁的設計內容如下:1)框架柱設計。在設計初始階段,如果外在條件全部一致,為了使框架柱截面的尺寸得到有效保證,可選擇2種框架柱截面尺寸,通常會選擇1個大柱尺寸,即:2500mm×2500mm規模;同時選取1個小柱尺寸,即:1800mm×1800mm規模,根據計算結果,采取對比的方法最終選擇適合本工程結構的合理尺寸。在外在條件一致時,大柱和小柱模型需采取分別進行計算的方法。由于會受到框架柱截面尺寸差異的影響,進而使結構剛度存在很大的差異。針對此類情況,需要利用地震組合工況控制好設計結構。從實際經驗來看,小柱模型在剛度上偏小,在柔性上較好,基于同樣風載或者地震條件作用之下,結構內力偏小,便于為構件截面設計提供有利的條件。2)框架梁設計。對于框架梁來說,因受到工藝設計需求的影響,加之標高相對明確,使得調整的空間偏小。在梁截面上,一般選取為1500mm×2500mm。在對梁截面剛度進行合理增多的條件下,能夠使框架柱的反彎點位置得到有效控制,進而使框架梁設計彎矩的要求得到有效滿足。基于框架梁內部對H型鋼進行設計,能夠和框架柱內型鋼柱之間組合成為內框架體系,從而使結構的整體性得到有效提升[4]。此外,框架頂板屬于設備的支座層,起到承載塔體荷載的作用,在頂板中間部位需設置型鋼斜梁,并采取STRAT計算結果提取內力,對厚板配筋進行計算。總結起來,在設置斜梁的條件下,能夠使頂板的受力得到有效改善,同時使傳力路線得到有效簡化。
5結語
本次研究結合實際工程案例,對型鋼混凝土在石油化工結構設計中的應用進行了探討。在了解工程實例的條件下,需選擇合理的型鋼混凝土結構,并通過模型的計算,進一步分析荷載組合,然后在截面設計過程中,注重框架柱的設計和框架梁的設計。總之,對于型鋼混凝土結構來說,對型鋼和混凝同受力的特性加以應用的條件下,使混凝土的抗壓性能以及型鋼的抗彎性能得到有效展現,進而使結構的延展性得到有效提升。此外,在合理應用型鋼混凝土結構的條件下,能夠提升結構空間的利用效率,進而使實際生產需求得到有效滿足。
作者:冉艷華 單位:中海油山東化學工程有限責任公司
【參考文獻】
【1】陳燕,何夕平,馬樂樂.各國規程對型鋼混凝土梁抗彎承載力計算對比分析[J].青島理工大學學報[J],2016(3):24-29.
【2】孫宇,鄭巖,胡勇剛.延遲焦化在煉油工業中的技術優勢及進展[J].石化技術與應用,2012(3):260-264.
【3】蘇君超.焦炭塔框架阻尼比的取值[J].石油化工設計,2014(4):15-18.
【4】宋桂珍.鋼結構防火涂料在石油化工裝置中的應用[J].技術與市場,2011(6):175.
【5】靳鐵鋼.輕型鋼結構設計問題探討[J].城市建設理論研究(電子版),2011(33):11-12.
【6】張金法.門式剛架輕型鋼結構設計及施工中一些問題和措施[J].城市建設理論研究(電子版),2011(22):46-47.
【7】唐國昱.型鋼混凝土結構在工程設計中的應用[J].價值工程,2012(21):93.
【8】JasimAliAbdullah.鋼管混凝土和套管混凝土短柱的抗剪強度和性能分析[J].鋼結構,2010(3):156-157.
【9】劉巨保,許蘊博.基于GB50341標準設計的立式拱頂儲罐弱頂結構分析與評價[J].化工機械,2011(4):96.
【10】李懿.淺析輕鋼廠房結構設計要點[J].山西建筑,2013(17):75.