前言:我們精心挑選了數篇優質數據加密技術論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
一:數據加密方法
在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟件很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密算法的(當同時有原文和密文時,破譯加密算法雖然也不是很容易,但已經是可能的了)。最好的加密算法對系統性能幾乎沒有影響,并且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟件包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密算法都要有高效的加密和解密能力。
幸運的是,在所有的加密算法中最簡單的一種就是“置換表”算法,這種算法也能很好達到加密的需要。每一個數據段(總是一個字節)對應著“置換表”中的一個偏移量,偏移量所對應的值就輸出成為加密后的文件。加密程序和解密程序都需要一個這樣的“置換表”。事實上,80x86cpu系列就有一個指令‘xlat’在硬件級來完成這樣的工作。這種加密算法比較簡單,加密解密速度都很快,但是一旦這個“置換表”被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密算法對于黑客破譯來講是相當直接的,只要找到一個“置換表”就可以了。這種方法在計算機出現之前就已經被廣泛的使用。
對這種“置換表”方式的一個改進就是使用2個或者更多的“置換表”,這些表都是基于數據流中字節的位置的,或者基于數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的“置換表”,并且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用“置換表”相類似,“變換數據位置”也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然后按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。
但是,還有一種更好的加密算法,只有計算機可以做,就是字/字節循環移位和xor操作。如果我們把一個字或字節在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然后循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。
在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,并且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟件中一定要使用加密技術。
循環冗余校驗是一種典型的校驗數據的方法。對于每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用于文件的傳輸,例如xmodem-crc。這是方法已經成為標準,而且有詳細的文檔。但是,基于標準crc算法的一種修改算法對于發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。
二.基于公鑰的加密算法
一個好的加密算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,并用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰算法和非對稱密鑰算法。所謂對稱密鑰算法就是加密解密都使用相同的密鑰,非對稱密鑰算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的算法存在。例如,對于一個輸入‘a’執行一個操作得到結果‘b’,那么我們可以基于‘b’,做一個相對應的操作,導出輸入‘a’。在一些情況下,對于每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對于一個沒有定義的操作來講,基于加密算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。
rsa加密算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至于在現實上是不可行的。加密算法本身也是很慢的,這使得使用rsa算法加密大量的數據變的有些不可行。這就使得一些現實中加密算法都基于rsa加密算法。pgp算法(以及大多數基于rsa算法的加密方法)使用公鑰來加密一個對稱加密算法的密鑰,然后再利用一個快速的對稱加密算法來加密數據。這個對稱算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
我們舉一個例子:假定現在要加密一些數據使用密鑰‘12345’。利用rsa公鑰,使用rsa算法加密這個密鑰‘12345’,并把它放在要加密的數據的前面(可能后面跟著一個分割符或文件長度,以區分數據和密鑰),然后,使用對稱加密算法加密正文,使用的密鑰就是‘12345’。當對方收到時,解密程序找到加密過的密鑰,并利用rsa私鑰解密出來,然后再確定出數據的開始位置,利用密鑰‘12345’來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。
一些簡單的基于rsa算法的加密算法可在下面的站點找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一個嶄新的多步加密算法
現在又出現了一種新的加密算法,據說是幾乎不可能被破譯的。這個算法在1998年6月1日才正式公布的。下面詳細的介紹這個算法:
使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:
把256個隨機數放在一個距陣中,然后對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256字節的表。讓這個隨機數產生器接著來產生這個表中的其余的數,以至于每個表是不同的。下一步,使用"shotguntechnique"技術來產生解碼表。基本上說,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256字節的解碼表它對應于我們剛才在上一步產生的256字節的加密表。
使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個字節的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個字節密文是這個256字節的表的索引。或者,為了提高加密效果,可以使用多余8位的值,甚至使用校驗和或者crc算法來產生索引字節。假定這個表是256*256的數組,將會是下面的樣子:
crypto1=a[crypto0][value]
變量''''crypto1''''是加密后的數據,''''crypto0''''是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個“種子”,這個“種子”是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試:使用16個字節來產生表的索引,以128位的密鑰作為這16個字節的初始的"種子"。然后,在產生出這些隨機數的表之后,就可以用來加密數據,速度達到每秒鐘100k個字節。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關于這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如“eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個字節都依賴于其前一個字節的密文,而不是實際的值。對于任一個單個的字符的這種變換來說,隱藏了加密數據的有效的真正的長度。
如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。這個算法產生了一系列的隨機數。算法如下:
unsignedlongdw1,dw2,dw3,dwmask;
inti1;
unsignedlongarandom[256];
dw1={seed#1};
dw2={seed#2};
dwmask={seed#3};
//thisgivesyou332-bit"seeds",or96bitstotal
for(i1=0;i1<256;i1++)
{
dw3=(dw1+dw2)^dwmask;
arandom[i1]=dw3;
dw1=dw2;
dw2=dw3;
}
如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:
int__cdeclmysortproc(void*p1,void*p2)
{
unsignedlong**pp1=(unsignedlong**)p1;
unsignedlong**pp2=(unsignedlong**)p2;
if(**pp1<**pp2)
return(-1);
elseif(**pp1>*pp2)
return(1);
return(0);
}
...
inti1;
unsignedlong*aprandom[256];
unsignedlongarandom[256];//samearrayasbefore,inthiscase
intaresult[256];//resultsgohere
for(i1=0;i1<256;i1++)
{
aprandom[i1]=arandom+i1;
}
//nowsortit
qsort(aprandom,256,sizeof(*aprandom),mysortproc);
//finalstep-offsetsforpointersareplacedintooutputarray
for(i1=0;i1<256;i1++)
{
aresult[i1]=(int)(aprandom[i1]-arandom);
}
...
變量''''aresult''''中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個字節對字節的轉換表,就可以很容易并且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字符,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言并沒有構成一個加密算法,只是加密算法一個組成部分。
作為一個測試,開發了一個應用程序來測試上面所描述的加密算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用于加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至于在現實上是不可能的。
四.結論:
由于在現實生活中,我們要確保一些敏感的數據只能被有相應權限的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用于政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。
參考文獻:
1.pgp!/
cyberknights(newlink)/cyberkt/
(oldlink:/~merlin/knights/)
2.cryptochamberjyu.fi/~paasivir/crypt/
3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/
4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/
agreatenigmaarticle,howthecodewasbrokenbypolishscientists
/nbrass/1enigma.htm
5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/
6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/
7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/
8.rsadatasecurity(whynotincludethemtoo!)/
一:數據加密方法
在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟件很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密算法的(當同時有原文和密文時,破譯加密算法雖然也不是很容易,但已經是可能的了)。最好的加密算法對系統性能幾乎沒有影響,并且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟件包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密算法都要有高效的加密和解密能力。
幸運的是,在所有的加密算法中最簡單的一種就是“置換表”算法,這種算法也能很好達到加密的需要。每一個數據段(總是一個字節)對應著“置換表”中的一個偏移量,偏移量所對應的值就輸出成為加密后的文件。加密程序和解密程序都需要一個這樣的“置換表”。事實上,80x86cpu系列就有一個指令‘xlat’在硬件級來完成這樣的工作。這種加密算法比較簡單,加密解密速度都很快,但是一旦這個“置換表”被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密算法對于黑客破譯來講是相當直接的,只要找到一個“置換表”就可以了。這種方法在計算機出現之前就已經被廣泛的使用。
對這種“置換表”方式的一個改進就是使用2個或者更多的“置換表”,這些表都是基于數據流中字節的位置的,或者基于數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的“置換表”,并且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用“置換表”相類似,“變換數據位置”也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然后按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。
但是,還有一種更好的加密算法,只有計算機可以做,就是字/字節循環移位和xor操作。如果我們把一個字或字節在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然后循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。
在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,并且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟件中一定要使用加密技術。
循環冗余校驗是一種典型的校驗數據的方法。對于每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用于文件的傳輸,例如xmodem-crc。這是方法已經成為標準,而且有詳細的文檔。但是,基于標準crc算法的一種修改算法對于發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。二.基于公鑰的加密算法
一個好的加密算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,并用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰算法和非對稱密鑰算法。所謂對稱密鑰算法就是加密解密都使用相同的密鑰,非對稱密鑰算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的算法存在。例如,對于一個輸入‘a’執行一個操作得到結果‘b’,那么我們可以基于‘b’,做一個相對應的操作,導出輸入‘a’。在一些情況下,對于每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對于一個沒有定義的操作來講,基于加密算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。
rsa加密算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至于在現實上是不可行的。加密算法本身也是很慢的,這使得使用rsa算法加密大量的數據變的有些不可行。這就使得一些現實中加密算法都基于rsa加密算法。pgp算法(以及大多數基于rsa算法的加密方法)使用公鑰來加密一個對稱加密算法的密鑰,然后再利用一個快速的對稱加密算法來加密數據。這個對稱算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
我們舉一個例子:假定現在要加密一些數據使用密鑰‘12345’。利用rsa公鑰,使用rsa算法加密這個密鑰‘12345’,并把它放在要加密的數據的前面(可能后面跟著一個分割符或文件長度,以區分數據和密鑰),然后,使用對稱加密算法加密正文,使用的密鑰就是‘12345’。當對方收到時,解密程序找到加密過的密鑰,并利用rsa私鑰解密出來,然后再確定出數據的開始位置,利用密鑰‘12345’來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。
一些簡單的基于rsa算法的加密算法可在下面的站點找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一個嶄新的多步加密算法
現在又出現了一種新的加密算法,據說是幾乎不可能被破譯的。這個算法在1998年6月1日才正式公布的。下面詳細的介紹這個算法:
使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:
把256個隨機數放在一個距陣中,然后對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256字節的表。讓這個隨機數產生器接著來產生這個表中的其余的數,以至于每個表是不同的。下一步,使用"shotguntechnique"技術來產生解碼表。基本上說,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256字節的解碼表它對應于我們剛才在上一步產生的256字節的加密表。
使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個字節的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個字節密文是這個256字節的表的索引。或者,為了提高加密效果,可以使用多余8位的值,甚至使用校驗和或者crc算法來產生索引字節。假定這個表是256*256的數組,將會是下面的樣子:crypto1=a[crypto0][value]
變量''''crypto1''''是加密后的數據,''''crypto0''''是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個“種子”,這個“種子”是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試:使用16個字節來產生表的索引,以128位的密鑰作為這16個字節的初始的"種子"。然后,在產生出這些隨機數的表之后,就可以用來加密數據,速度達到每秒鐘100k個字節。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關于這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如“eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個字節都依賴于其前一個字節的密文,而不是實際的值。對于任一個單個的字符的這種變換來說,隱藏了加密數據的有效的真正的長度。
如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。這個算法產生了一系列的隨機數。算法如下:
unsignedlongdw1,dw2,dw3,dwmask;
inti1;
unsignedlongarandom[256];
dw1={seed#1};
dw2={seed#2};
dwmask={seed#3};
//thisgivesyou332-bit"seeds",or96bitstotal
for(i1=0;i1<256;i1++)
{
dw3=(dw1+dw2)^dwmask;
arandom[i1]=dw3;
dw1=dw2;
dw2=dw3;
}
如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:
int__cdeclmysortproc(void*p1,void*p2)
{
unsignedlong**pp1=(unsignedlong**)p1;
unsignedlong**pp2=(unsignedlong**)p2;
if(**pp1<**pp2)
return(-1);
elseif(**pp1>*pp2)
return(1);
return(0);
}
...
inti1;
unsignedlong*aprandom[256];
unsignedlongarandom[256];//samearrayasbefore,inthiscase
intaresult[256];//resultsgohere
for(i1=0;i1<256;i1++)
{
aprandom[i1]=arandom+i1;
}
//nowsortit
qsort(aprandom,256,sizeof(*aprandom),mysortproc);
//finalstep-offsetsforpointersareplacedintooutputarray
for(i1=0;i1<256;i1++)
{
aresult[i1]=(int)(aprandom[i1]-arandom);
}
...
變量''''aresult''''中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個字節對字節的轉換表,就可以很容易并且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字符,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言并沒有構成一個加密算法,只是加密算法一個組成部分。
作為一個測試,開發了一個應用程序來測試上面所描述的加密算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用于加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至于在現實上是不可能的。
四.結論:
由于在現實生活中,我們要確保一些敏感的數據只能被有相應權限的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用于政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。
參考文獻:
1.pgp!/
cyberknights(newlink)/cyberkt/
(oldlink:/~merlin/knights/)
2.cryptochamberjyu.fi/~paasivir/crypt/
3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/
4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/
agreatenigmaarticle,howthecodewasbrokenbypolishscientists
/nbrass/1enigma.htm
5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/
6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/
7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/
8.rsadatasecurity(whynotincludethemtoo!)/
【關鍵詞】數據庫加密、加密算法、加密技術特性、加密字典、加解密引擎。
隨著電子商務逐漸越來越多的應用,數據的安全問題越來越受到重視。一是企業本身需要對自己的關鍵數據進行有效的保護;二是企業從應用服務提供商(ApplicationServiceProvider,ASP)處獲得應用支持和服務,在這種情況下,企業的業務數據存放在ASP處,其安全性無法得到有效的保障。因為傳統的數據庫保護方式是通過設定口令字和訪問權限等方法實現的,數據庫管理員可以不加限制地訪問和更改數據庫中的所有數據。解決這一問題的關鍵是要對數據本身加密,即使數據不幸泄露或丟失,也難以被人破譯,關于這一點現基本數據庫產品都支持對數據庫中的所有數據加密存儲。
-對數據進行加密,主要有三種方式:系統中加密、客戶端(DBMS外層)加密、服務器端(DBMS內核層)加密。客戶端加密的好處是不會加重數據庫服務器的負載,并且可實現網上的傳輸加密,這種加密方式通常利用數據庫外層工具實現。而服務器端的加密需要對數據庫管理系統本身進行操作,屬核心層加密,如果沒有數據庫開發商的配合,其實現難度相對較大。此外,對那些希望通過ASP獲得服務的企業來說,只有在客戶端實現加解密,才能保證其數據的安全可靠。
1.常用數據庫加密技術
信息安全主要指三個方面。一是數據安全,二是系統安全,三是電子商務的安全。核心是數據庫的安全,將數據庫的數據加密就抓住了信息安全的核心問題。
對數據庫中數據加密是為增強普通關系數據庫管理系統的安全性,提供一個安全適用的數據庫加密平臺,對數據庫存儲的內容實施有效保護。它通過數據庫存儲加密等安全方法實現了數據庫數據存儲保密和完整性要求,使得數據庫以密文方式存儲并在密態方式下工作,確保了數據安全。
1.1數據庫加密技術的功能和特性
經過近幾年的研究,我國數據庫加密技術已經比較成熟。
一般而言,一個行之有效的數據庫加密技術主要有以下6個方面的功能和特性。
(1)身份認證:
用戶除提供用戶名、口令外,還必須按照系統安全要求提供其它相關安全憑證。如使用終端密鑰。
(2)通信加密與完整性保護:
有關數據庫的訪問在網絡傳輸中都被加密,通信一次一密的意義在于防重放、防篡改。
(3)數據庫數據存儲加密與完整性保護:
數據庫系統采用數據項級存儲加密,即數據庫中不同的記錄、每條記錄的不同字段都采用不同的密鑰加密,輔以校驗措施來保證數據庫數據存儲的保密性和完整性,防止數據的非授權訪問和修改。
(4)數據庫加密設置:
系統中可以選擇需要加密的數據庫列,以便于用戶選擇那些敏感信息進行加密而不是全部數據都加密。只對用戶的敏感數據加密可以提高數據庫訪問速度。這樣有利于用戶在效率與安全性之間進行自主選擇。
(5)多級密鑰管理模式:
主密鑰和主密鑰變量保存在安全區域,二級密鑰受主密鑰變量加密保護,數據加密的密鑰存儲或傳輸時利用二級密鑰加密保護,使用時受主密鑰保護。
(6)安全備份:
系統提供數據庫明文備份功能和密鑰備份功能。
1.2對數據庫加密系統基本要求
(1)字段加密;
(2)密鑰動態管理;
(3)合理處理數據;
(4)不影響合法用戶的操作;
(5)防止非法拷貝;
1.3數據加密的算法
加密算法是一些公式和法則,它規定了明文和密文之間的變換方法。密鑰是控制加密算法和解密算法的關鍵信息,它的產生、傳輸、存儲等工作是十分重要的。
數據加密的基本過程包括對明文(即可讀信息)進行翻譯,譯成密文或密碼的代碼形式。該過程的逆過程為解密,即將該編碼信息轉化為其原來的形式的過程。
DES算法,DES(DataEncryptionStandard)是由IBM公司在1970年以后發展起來的,于1976年11月被美國政府采用,DES隨后被美國國家標準局和美國國家標準協會(AmericanNationalStandardInstitute,ANSI)承認,DES算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,DES算法中只用到64位密鑰中的其中56位。
三重DES,DES的密碼學缺點是密鑰長度相對比較短,因此,人們又想出了一個解決其長度的方法,即采用三重DES,三重DES是DES的一種變形。這種方法使用兩個獨立的56位密鑰對交換的信息(如EDI數據)進行3次加密,從而使其有效密鑰長度達到112位或168位,對安全性有特殊要求時則要采用它。
RSA算法它是第一個既能用于數據加密也能用于數字簽名的算法。它易于理解和操作,也很流行。算法的名字就是發明者的名字:RonRivest,AdiShamir和LeonardAdleman,但RSA的安全性一直未能得到理論上的證明,RSA的安全性依賴于大數的因子分解,但并沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向于因子分解不是NPC問題,RSA算法是第一個能同時用于加密和數字簽名的算法,也易于理解和操作。RSA是被研究得最廣泛的公鑰算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。
AES是美國高級加密標準算法,將在未來幾十年里代替DES在各個領域中得到廣泛應用,盡管人們對AES還有不同的看法,但總體來說,AES作為新一代的數據加密標準匯聚了強安全性、高性能、高效率、易用和靈活等優點。AES設計有三個密鑰長度:128,192,256位,相對而言,AES的128密鑰比DES的56密鑰強1021倍。AES算法主要包括三個方面:輪變化、圈數和密鑰擴展。在理論上,此加密方法需要國家軍事量級的破解設備運算10年以上時間才可能破譯。
1.4數據庫數據加密的實現
使用數據庫安全保密中間件對數據庫進行加密是最簡便直接的方法。主要是通過系統中加密、DBMS內核層(服務器端)加密和DBMS外層(客戶端)加密。
在系統中加密,在系統中無法辨認數據庫文件中的數據關系,將數據先在內存中進行加密,然后文件系統把每次加密后的內存數據寫入到數據庫文件中去,讀入時再逆方面進行解密就,這種加密方法相對簡單,只要妥善管理密鑰就可以了。缺點對數據庫的讀寫都比較麻煩,每次都要進行加解密的工作,對程序的編寫和讀寫數據庫的速度都會有影響。
在DBMS內核層實現加密需要對數據庫管理系統本身進行操作。這種加密是指數據在物理存取之前完成加解密工作。這種加密方式的優點是加密功能強,并且加密功能幾乎不會影響DBMS的功能,可以實現加密功能與數據庫管理系統之間的無縫耦合。其缺點是加密運算在服務器端進行,加重了服務器的負載,而且DBMS和加密器之間的接口需要DBMS開發商的支持。
在DBMS外層實現加密的好處是不會加重數據庫服務器的負載,并且可實現網上的傳輸,加密比較實際的做法是將數據庫加密系統做成DBMS的一個外層工具,根據加密要求自動完成對數據庫數據的加解密處理。
采用這種加密方式進行加密,加解密運算可在客戶端進行,它的優點是不會加重數據庫服務器的負載并且可以實現網上傳輸的加密,缺點是加密功能會受到一些限制,與數據庫管理系統之間的耦合性稍差。
數據庫加密系統分成兩個功能獨立的主要部件:一個是加密字典管理程序,另一個是數據庫加解密引擎。數據庫加密系統將用戶對數據庫信息具體的加密要求以及基礎信息保存在加密字典中,通過調用數據加解密引擎實現對數據庫表的加密、解密及數據轉換等功能。數據庫信息的加解密處理是在后成的,對數據庫服務器是透明的。
按以上方式實現的數據庫加密系統具有很多優點:首先,系統對數據庫的最終用戶是完全透明的,管理員可以根據需要進行明文和密文的轉換工作;其次,加密系統完全獨立于數據庫應用系統,無須改動數據庫應用系統就能實現數據加密功能;第三,加解密處理在客戶端進行,不會影響數據庫服務器的效率。
數據庫加解密引擎是數據庫加密系統的核心部件,它位于應用程序與數據庫服務器之間,負責在后成數據庫信息的加解密處理,對應用開發人員和操作人員來說是透明的。數據加解密引擎沒有操作界面,在需要時由操作系統自動加載并駐留在內存中,通過內部接口與加密字典管理程序和用戶應用程序通訊。數據庫加解密引擎由三大模塊組成:加解密處理模塊、用戶接口模塊和數據庫接口模塊。
2.結束語
上面的論述還遠遠沒達到數據庫安全需要,比如現在的數據庫基本都給與網絡架構,網際的安全傳輸等,也是要重點考慮的方面,等等。一個好的安全系統必須綜合考慮核運用這些技術,以保證數據的安全,通過一上論述希望對大家有所幫助,同時也和大家一起討論一起學習,共同進步。
參考文獻:
[1]現代數據庫管理(美)JeffreyA.Hoffer,MaryB.Prescott,FredR.McFadden著