前言:我們精心挑選了數篇優質計算機發展論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
之所以能夠產生明顯的效果,關鍵是政府職能明確,不斷根據產業發展需要調整支持方向,改進資助體系和管理。總結美國聯邦政府支持計算機技術研究開發的經驗,對我國政府支持產業技術發展有著重要的借鑒作用。
一、美國政府對計算機技術發展的支持
第二次世界大戰結束后,聯邦政府一直是計算機技術的強有力支持者。按1995年不變價計算,1976-1995年間,聯邦政府對計算機科學研究和技術開發的支持由1.8億美元增加到9.6億美元,增長了5倍。其中,基礎研究投入由6500萬美元增加到2.65億美元;應用研究投入由1.16億美元增加到7億美元。聯邦政府資助中約35-45%投向大學,其余55-65%投向政府實驗室和產業界;政府基礎研究資金的70%投向大學。聯邦政府還對其他與計算機技術相關的研究給予資助。聯邦政府對與計算機研究相關的其他技術和電子工程研究方面的投入由1972年的不到10億美元增加到1995年的17億美元,占聯邦總投入的比重由5%增至7%。
聯邦政府從其職能出發決定資助方向,政府資金主要投向以下幾個方面。
(一)重點支持長期的基礎性研究
美國政府在長期基礎性研究和共性應用技術的研究開發方面發揮了重要作用。長期基礎性研究的主要特點,一是其效益往往在短期內無法顯現出來,風險較大。特別是在產業發展初期,企業沒有實力進行這樣的研究工作;二是其應用領域往往比較廣泛,一家公司無法完全利用,而且又無力阻止競爭者利用其研究成果。因此,產業界較少對長期基礎性研究進行投資。
美國聯邦政府對計算機技術的長期基礎性研究的資助項目已經取得了明顯的效果。如,政府資助的計算機人工智能技術研究開始于70年代早期,直到1997年才研制出能夠成功識別持續性語音的個人電腦。與此相似的是,國防基金從60年代就開始資助可用于三維圖像的基礎性系統研究,直到90年代才形成消費性產品。盡管這項成果在高性能儀器中早已開始應用,但近些年才廣泛應用于醫療、娛樂及國防產業。
(二)資助計算機研究的基礎設施
聯邦政府在計算機基礎設施建設方面發揮了關鍵作用,為美國發展計算機產業提供了源源不斷的人才。
1.為產業發展培養了大量人力資源
聯邦政府的資助計劃培養了一大批電子工程和計算機科學的研究生和優秀研究人員,為計算機和電子工程的發展提供源源不斷的后續人才。國家科學基金的數據表明,1985-1996年間,獲得聯邦資金資助的計算機和電子工程專業的研究生比例從14%增加到20%。聯邦政府對研究生的資助主要采取助教獎學金的形式,助教獎學金占總資助額的75%以上。1985年到1995年,全國最好的計算機系里,如MIT、卡內基·梅隆、加利弗尼亞大學勃克力分校等的計算機和電子工程專業的研究生中約有56%得到了聯邦政府的資助,其中一半是助教獎學金。1997年,斯坦福大學電子工業和計算機專業27%的研究生獲得聯邦政府資助,50-60%的博士得到資助。同時,政府資助的一些大型研究項目還培養了一批學術帶頭人。
2.為大學教育和研究提供了良好的設備和設施
配備和維護研究的硬件設備需要較高的資金投入,一般的大學很難籌集到這筆資金。聯邦政
府采取多種形式來支持大學購買計算機設備,主要有兩種形式:一種是為大學教學提供計算機設備;另一種是通過資助特定研究項目為大學提供精良設備。
聯邦政府在支持大學研究設備方面的主要貢獻,一是支持建立大學計算中心,資助大學計算機系開展研究工作。國家科學基金(以下簡稱“NSF”)于1956年就開始了為大學提供普通教學和研究用計算機的資助計劃。該計劃每年提供的資助金額增長很快,1958-1970年間,共資助了66,00萬美元。60年代,國防部高級項目處(以下簡稱“DARPA”)重點資助了少數幾個基礎好的大學計算機系(如MIT,卡內基-梅隆大學,斯坦福大學)開展專門項目研究,資助項目的大部分資金用來采購設備。據估計,60年代,全美大學中約一半的計算設備是由政府機構資助提供。1981-1995年間,聯邦政府資助了計算機科學系研究設備采購的65%,1985年高達83%。在電子工程方面,聯邦政府的設備資助也維持在較高的水平,1982年為75%,1995年為60%。NSF啟動了兩套專門為計算機科學系提供設備的計劃:計算機研究設備計劃和一個更加廣泛的協作實驗研究計劃。
二是研制高性能計算設備和建設網絡設施。80年代中期,政府資助了IBM701等高性能計算機
的研制,造出了供研究人員進行各種研究使用的大型計算機系統。1985年,NSF啟動了一項建立超級計算機中心的計劃,資助建立了5個全國范圍的計算機中心,為那些不能在普通計算機上進行的高級的、運算復雜的研究提供了條件。后來,這些中心成為高性能計算機的早期試驗場,還對一些計算機科學系的教學起了重要作用。同時,這項計劃還帶動州、私人部門出資在其他大學建立超級計算機中心。
隨著網絡技術的發展,政府加大對網絡設施的資助力度。1973年起,NSF著手進行一項科學網絡的計劃,每年提供60萬美元到75萬美元為大學的研究人員建立計算機網絡。
(三)支持利用高新技術的大型應用系統的研究開發和推廣
聯邦政府有效資助了大型應用系統的研究開發項目。DARPA支持了計算機間相互聯結的分批轉換網絡(ARPANET)的研究項目。這項研究促進了有關入網協議、分批轉換及路線安排等項研究。同時也推進了對大型網絡管理模式的開發研究,如,域名系統及開發電子郵件等。DARPA的研究成果顯示了大型分批轉換網絡的價值,促進了其他網絡的開發。NSF網絡的建立形成了網絡的基礎。政府通過資助大型高新技術應用系統的開發,把學術界和產業界的研究者匯聚起來共同建立共用的實驗室,交流思想,從而創造出一支有能力最終推動技術發展的研究力量。如,50年代的SAGE項目組織了來自MIT、IBM及其它研究實驗室的研究者,整個項目過程中出現了許多創新思想,目前在計算機行業已經獲得廣泛認可的想法都是當時提出來的。許多計算機行業中的先驅人物也從50-60年代的控制計算機系統(SAGE)項目中獲得了經驗,后來這些人在代表著計算機及通訊事業新興的公司及實驗室中工作。SAGE的影響在后來的幾十年中才逐步顯現出來。
構造大型應用系統的實踐表明,有些研究并不一定直接導致某一項技術的創新,而是導致開發與技術推廣。應用開發是對已經研究出來的技術進行分析和合理組合,形成新的應用系統。如,建立大型應用系統的研究項目就是把電子通訊系統的原理應用到ARPANET項目開發中,形成了網絡技術的基礎。
(四)對產業技術的早期資助
20世紀50年代,聯邦政府資助了絕大部分計算機技術的研究。那時,政府對計算機技術研究
開發的資助超過工業界R&D投入的3倍,幾乎覆蓋了整個計算機界的研究與開發。直到1963年,政府還資助著IBM計算機R&D的35%,Burroughs公司的50%,Control-Data公司的40%。從60年代末開始,因為整個計算機行業快速發展,政府對計算機R&D資助的比例急劇下降。直到70年代中期,政府資助僅占計算機R&D投入的25%,1979年達到戰后的最低點15%。隨著新項目的啟動和里根執政時期的國防建設,1983年,政府對計算機技術研究的資助比例又有回升,約占20%。
美國政府對產業界的資助重點放在推動技術商業化方面。一是對產業界早期研究的資助。政府對企業實驗室提出的一些有市場前景的技術給予資助,將其推向商業化。例如,IBM最先提出了相關性數據庫的構想,但IBM考慮到這項技術構想可能對自己已經成熟的產品造成潛在的競爭威脅,沒有繼續進行商業化研究開發投入。而NSF資助加州大學伯克立分校對這一構想進行深入研究,并將其推向商業化;二是支持共性技術研究開發。有些研究開發具有商業價值,但屬于共性技術,單個企業難以研究開發,或者企業擔心難以控制競爭者使用技術成果。IBM最先開發了RISC(精簡指令系統計算機),但直到DARPA資助加州大學伯克立分校及斯坦福大學進行深入研究時,RISC才實現了商業化。該研究是作為70年代末、80年代初“大規模集成電路”(VLSI)項目的一部分來進行的。后來許多公司把以RISC為基礎的產品引入了市場領域。
(五)聯邦政府的資助對創新起到重要作用
聯邦政府的資助計劃促進了計算機技術的創新。據統計,1993至1994年間,美國全國共批準了1619項與計算機產業有關的專利。盡管這些專利的所有者75%是美國企業,但它們所引用的論文大部分是由大學或政府的研究人員撰寫的。在按資助來源分類統計的論文中,51%的資助來自于聯邦政府,37%來自產業界的資助。政府資助中NSF占22%,DARPA占6%。盡管這些數據僅限于兩年的專利統計,但反映出聯邦所資助的項目,特別是在大學里進行的資助研究,推動了計算機行業的技術創新。
二、美國政府在計算機產業技術發展各階段中的主要作用
政府在計算機科學技術發展過程中的作用,隨計算機產業成長和發展階段不同而變化。(一)50年代——計算機技術發展的初期階段,政府的主要作用是用戶和資助者
在1960年以前,美國政府作為用戶和資助者,主導著電子計算機技術的研究開發。這一期間,政府支持計算機技術主要出于國防需要,資助面比較窄,重點是對技術本身的試驗,而且沒有一個系統的長期戰略計劃。但是,這一時期的政府資助項目嘗試了不同類型的資助機制,對私營部門產生了非常重要的影響。
50年代,幾個主要計算機公司的R&D都得到過聯邦政府的各種形式的資助。例如,在IBM公司的R&D投入中,政府合同資助投入占50%以上,直到1963年還有35%。聯邦政府不僅在資金上對私營部門提供資助,而且從項目設計、技術思路、人力資源等方面提供了支持。資助的項目涉及到有關國家安全、人力資源培養等各方面,還包括一些綜合性、高投入、不確定性大、具有長期影響的技術開發項目。政府資助的許多項目研究出了設備的原型,在這些原型基礎上,研究人員可以進行更深入的探索。
(二)60-70年代——技術擴散和產業增長階段,政府扶持的重點轉向長期基礎性研究和培養人才
60年代初期,美國的計算機行業開始商業化,可以獨立于政府的資助和采購,全國出現了幾個大型的計算機公司。這些大型公司建立了自己的實驗室,并且有能力自己研究開發計算機應用技術,從而促進了計算機產業的商業化。如,IBM公司與美國航空公司在部分采用軍事指揮和SAGE技術的基礎上,開發了計算機訂票系統(SABRE系統)。計算機定票系統的迅速發展成為推動計算機產業化的一個重要動力。與此同時,產業界對計算機人才的需求大大增加。出現了計算機科學領域,幾個重要學校的計算機系已經成立。
隨著計算機技術產業化和商業化,政府的資助重點開始轉向長期基礎性研究和培養人才。60年代后期至70年代,由于計算機產業界對R&D的投入增加,盡管政府資助產業界的絕對數額還在上升,但比例卻急劇下降。
(三)80-90年代——計算機產業成熟階段,政府積極組織和支持聯合研究開發
隨著產業界增加對計算機技術研究開發的投入,政府資助所占比例開始下降。80年代初期,日本的電子工程和計算機存儲器等技術開發,使美國的計算機產業感到了競爭威脅。同時,美國半導體生產設備的國際市場份額從75%下降到了40%。“增強競爭力”成了美國80年代技術政策的關鍵字眼,國內要求政府采取行動的呼聲提高。同時,大學與實業界開始以合資、協議等方式進行合作,或組織行業協會抵制來自日本的威脅。
為了提高美國計算機產業的競爭力,使其在世界占據領先地位,聯邦政府不僅繼續支持計算機科學和技術的研究,而且調整了支持重點和資助方式。政府對計算機技術的資助重點開始轉向支持各界聯合開發,通過支持行業協會等一些新機構,組織和促進產業界聯合開發。1984年的國家合作研究法案從不信任法案中把研究協會的名字去掉了,從而使研究協會的合作合法化。政府支持半導體制造技術協會(SEMATECH)等行業性組織機構,發揮其在計算機技術聯合開發中的組織作用。那一時期,半導體制造技術協會和高性能計算機研究所等受到政府資助的行業性機構,成為計算機技術研究開發和政策議程的主導者。
90年代,政府一方面對現存的政府所有的成熟的計算機基礎設施實現商業化和私有化;另一
方面又開始資助新的更高層次的技術研究。如,NSF于1992年將其互聯網向商業應用開放之后,又于1995年成功地把NSF的互聯網推向私有化。與此同時,NSF和其他聯邦機構還在繼續進行下一代互聯網(NGI)的開發與擴展工作,計劃將互聯網的數據傳輸速度提高100倍。NGI計劃將建立一個試驗性的、范圍廣闊的、可升級的測試系統,用以開發那些對國家至關重要的網絡應用技術,如國防和醫療等。
三、幾點啟示
美國政府資助計算機技術發展的經驗,對我們有以下幾點啟示。
(一)政府職能明確
在美國的計算機革命中,政府、產業界和學校起了不同的作用。政府主要引導大學和產業界研究機構的研究,特別在建立前沿研究需要的實物基礎設施,培養大學生、研究生和技術隊伍等方面起到關鍵性作用。盡管有些在市場中處于主導地位的大公司,如AT&T、IBM、微軟和英特爾等在基礎研究方面也投入了大量資金。但大公司更傾向投資于與其發展目標及產品開發有緊密聯系的研究項目。而政府則在長期基礎性研究、應用前途廣泛的共性技術研究開發方面發揮了重要作用。
隨著計算機產業從幼稚產業發展為成熟產業,美國聯邦政府的作用經歷了一系列變化。從50年代的用戶和資助者,60-70年代的資助基礎研究和培養人才,到80-90年代的合作者。資助機構和管理也從分散、無戰略計劃逐步發展到由專門機構統一協調。
(二)資助來源多元化和機制多樣化,發揮政府機構的作用
聯邦政府對于計算機技術與電子工程技術的資助主要是通過幾個機構來完成的。例如國防部、國家科學基金、國家航空航天部、能源部及國家健康機構。這些機構的特點是,專業技術能力比較強,機構內部有許多專業技術人員,有些機構本身就是國家研究機構。除國家科學基金外,這些機構大都是計算機技術的直接需求和應用方,經常根據部門自身的需要資助計算機技術研究開發。
多元化的優點,一是有利于技術發展的多樣性。由于計算機技術是工具性技術,各個領域有不同的需求,因此,每一個機構都有各自的資助重點及資助方式,從而促進計算機技術多樣化發展;二是提供多種潛在的支持,增加了研究機構和研究人員的選擇余地,有利于競爭;三是研究成果可以在不同的機構間轉移,形成廣泛的用途,提高了研究成果的利用效率。
(三)加強統一協調
盡管美國政府對計算機技術的資助計劃是由專業管理部門分別執行的,但是,隨著計算機產業的成熟和資助規模的擴大,各專業管理部門和聯邦政府不斷加強對計算機資助項目計劃的統一協調和戰略規劃。60年代以前,軍方對計算機技術的資助是根據各軍兵種自己的需求分散進行的。60年代初,國防部成立了高級研究項目處,并成立了專門的信息處理技術辦公室。一個重要目的就是協調軍方各部門的長期戰略性資助計劃,實行統一管理。
90年代,美國國家科學技術委員會中設置計算機、信息和通訊委員會,該機構通過下級委員
會,協調12個政府部門或機構的有關計算機和通訊技術的R&D項目,并重點組織實施了5個具有長期戰略意義的項目計劃。
這種體制即發揮了專業機構的積極性和技術特長,又加強了統一協調,避免重復研究和
分散競爭資源的局面,提高了政府資助的整體效果。
(四)以多種方式支持計算機技術
除了資助研究開發以外,美國政府對計算機技術市場的形成發揮了重要作用。美國政府是高新技術的最大用戶,政府采購為高新技術創造了巨大的市場。
從半導體到超級計算機,在許多領域中,政府創造了計算機及其技術的市場,促進新技術的標準化和核心技術在計算機行業的推廣。例如,聯邦政府為阿波羅號航天飛機采購的集成電路以及國防部的洲際彈道導彈項目都對集成電路生產能力的提高形成了一種刺激。為開發核武器,能源部及其前身機構對高性能計算機的需求驅動了早期超級計算機市場的形成。美國政府的統計體系也是早期計算機及其軟件的大用戶。在軟件方面,通過建立聯邦數據處理標準,聯邦政府促使市場向“美國國家標準機構”制定的COBOL(面向商用的通用計算機語言)不斷靠近;為使FORTRAN程序語言擴展應用于并聯計算機,政府資助了高級FORTRAN論壇項目。
反壟斷訴訟也具有深遠的影響。例如,1952年出現了針對IBM的反壟斷訴訟案,要求IBM公司出賣或出租其設備,以幫助其它公司進入這一商業領域。同時要求IBM公司對其包括電子計算機在內的所有有關信息處理設備的現有及未來專利實施許可制度,并規定了許可的比率。“司法部反壟斷部門”的負責人認為,IBM訴訟案是“開放電子領域的一個進步”,為其他公司進入計算機行業打開了方便之門。
(五)保持戰略產業在國際競爭中的領先地位
美國政府對計算機技術的貢獻中最發人深省的是,政府不僅在計算機產業的發展初期發揮了作用,而且在計算機產業逐步趨于成熟時,仍然起著重要作用。
關鍵詞:計算科學計算工具圖靈模型量子計算
1計算的本質
抽象地說,所謂計算,就是從一個符號串f變換成另一個符號串g。比如說,從符號串12+3變換成15就是一個加法計算。如果符號串f是x2,而符號串g是2x,從f到g的計算就是微分。定理證明也是如此,令f表示一組公理和推導規則,令g是一個定理,那么從f到g的一系列變換就是定理g的證明。從這個角度看,文字翻譯也是計算,如f代表一個英文句子,而g為含意相同的中文句子,那么從f到g就是把英文翻譯成中文。這些變換間有什么共同點?為什么把它們都叫做計算?因為它們都是從己知符號(串)開始,一步一步地改變符號(串),經過有限步驟,最后得到一個滿足預先規定的符號(串)的變換過程。
從類型上講,計算主要有兩大類:數值計算和符號推導。數值計算包括實數和函數的加減乘除、冪運算、開方運算、方程的求解等。符號推導包括代數與各種函數的恒等式、不等式的證明,幾何命題的證明等。但無論是數值計算還是符號推導,它們在本質上是等價的、一致的,即二者是密切關聯的,可以相互轉化,具有共同的計算本質。隨著數學的不斷發展,還可能出現新的計算類型。
2遠古的計算工具
人們從開始產生計算之日,便不斷尋求能方便進行和加速計算的工具。因此,計算和計算工具是息息相關的。
早在公元前5世紀,中國人已開始用算籌作為計算工具,并在公元前3世紀得到普遍的采用,一直沿用了二千年。后來,人們發明了算盤,并在15世紀得到普遍采用,取代了算籌。它是在算籌基礎上發明的,比算籌更加方便實用,同時還把算法口訣化,從而加快了計算速度。
3近代計算系統
近代的科學發展促進了計算工具的發展:在1614年,對數被發明以后,乘除運算可以化為加減運算,對數計算尺便是依據這一特點來設計。1620年,岡特最先利用對數計算尺來計算乘除。1850年,曼南在計算尺上裝上光標,因此而受到當時科學工作者,特別是工程技術人員廣泛采用。機械式計算器是與計算尺同時出現的,是計算工具上的一大發明。帕斯卡于1642年發明了帕斯卡加法器。在1671年,萊布尼茨發明了一種能作四則運算的手搖計算器,是長1米的大盒子。自此以后,經過人們在這方面多年的研究,特別是經過托馬斯、奧德內爾等人的改良后,出現了多種多樣的手搖計算器,并風行全世界。
4電動計算機
英國的巴貝奇于1834年,設計了一部完全程序控制的分析機,可惜礙于當時的機械技術限制而沒有制成,但已包含了現代計算的基本思想和主要的組成部分了。此后,由于電力技術有了很大的發展,電動式計算器便慢慢取代以人工為動力的計算器。1941年,德國的楚澤采用了繼電器,制成了第一部過程控制計算器,實現了100多年前巴貝奇的理想。
5電子計算機
20世紀初,電子管的出現,使計算器的改革有了新的發展,美國賓夕法尼亞大學和有關單位在1946年制成了第一臺電子計算機。電子計算機的出現和發展,使人類進入了一個全新的時代。它是20世紀最偉大的發明之一,也當之無愧地被認為是迄今為止由科學和技術所創造的最具影響力的現代工具。
在電子計算機和信息技術高速發展過程中,因特爾公司的創始人之一戈登·摩爾(GodonMoore)對電子計算機產業所依賴的半導體技術的發展作出預言:半導體芯片的集成度將每兩年翻一番。事實證明,自20世紀60年代以后的數十年內,芯片的集成度和電子計算機的計算速度實際是每十八個月就翻一番,而價格卻隨之降低一倍。這種奇跡般的發展速度被公認為“摩爾定律”。
6“摩爾定律”與“計算的極限”
人類是否可以將電子計算機的運算速度永無止境地提升?傳統計算機計算能力的提高有沒有極限?對此問題,學者們在進行嚴密論證后給出了否定的答案。如果電子計算機的計算能力無限提高,最終地球上所有的能量將轉換為計算的結果——造成熵的降低,這種向低熵方向無限發展的運動被哲學界認為是禁止的,因此,傳統電子計算機的計算能力必有上限。
而以IBM研究中心朗道(R.Landauer)為代表的理論科學家認為到21世紀30年代,芯片內導線的寬度將窄到納米尺度(1納米=10-9米),此時,導線內運動的電子將不再遵循經典物理規律——牛頓力學沿導線運行,而是按照量子力學的規律表現出奇特的“電子亂竄”的現象,從而導致芯片無法正常工作;同樣,芯片中晶體管的體積小到一定臨界尺寸(約5納米)后,晶體管也將受到量子效應干擾而呈現出奇特的反常效應。
哲學家和科學家對此問題的看法十分一致:摩爾定律不久將不再適用。也就是說,電子計算機計算能力飛速發展的可喜景象很可能在21世紀前30年內終止。著名科學家,哈佛大學終身教授威爾遜(EdwardO.Wilson)指出:“科學代表著一個時代最為大膽的猜想(形而上學)。它純粹是人為的。但我們相信,通過追尋“夢想—發現—解釋—夢想”的不斷循環,我們可以開拓一個個新領域,世界最終會變得越來越清晰,我們最終會了解宇宙的奧妙。所有的美妙都是彼此聯系和有意義的。”
7量子計算系統
量子計算最初思想的提出可以追溯到20世紀80年代。物理學家費曼RichardP.Feynman曾試圖用傳統的電子計算機模擬量子力學對象的行為。他遇到一個問題:量子力學系統的行為通常是難以理解同時也是難以求解的。以光的干涉現象為例,在干涉過程中,相互作用的光子每增加一個,有可能發生的情況就會多出一倍,也就是問題的規模呈指數級增加。模擬這樣的實驗所需的計算量實在太大了,不過,在費曼眼里,這卻恰恰提供一個契機。因為另一方面,量子力學系統的行為也具有良好的可預測性:在干涉實驗中,只要給定初始條件,就可以推測出屏幕上影子的形狀。費曼推斷認為如果算出干涉實驗中發生的現象需要大量的計算,那么搭建這樣一個實驗,測量其結果,就恰好相當于完成了一個復雜的計算。因此,只要在計算機運行的過程中,允許它在真實的量子力學對象上完成實驗,并把實驗結果整合到計算中去,就可以獲得遠遠超出傳統計算機的運算速度。
在費曼設想的啟發下,1985年英國牛津大學教授多伊奇DavidDeutsch提出是否可以用物理學定律推導出一種超越傳統的計算概念的方法即推導出更強的丘奇——圖靈論題。費曼指出使用量子計算機時,不需要考慮計算是如何實現的,即把計算看作由“神諭”來實現的:這類計算在量子計算中被稱為“神諭”(Oracle)。種種跡象表明:量子計算在一些特定的計算領域內確實比傳統計算更強,例如,現代信息安全技術的安全性在很大程度上依賴于把一個大整數(如1024位的十進制數)分解為兩個質數的乘積的難度。這個問題是一個典型的“困難問題”,困難的原因是目前在傳統電子計算機上還沒有找到一種有效的辦法將這種計算快速地進行。目前,就是將全世界的所有大大小小的電子計算機全部利用起來來計算上面的這個1024位整數的質因子分解問題,大約需要28萬年,這已經遠遠超過了人類所能夠等待的時間。而且,分解的難度隨著整數位數的增多指數級增大,也就是說如果要分解2046位的整數,所需要的時間已經遠遠超過宇宙現有的年齡。而利用一臺量子計算機,我們只需要大約40分鐘的時間就可以分解1024位的整數了。
8量子計算中的神諭
人類的計算工具,從木棍、石頭到算盤,經過電子管計算機,晶體管計算機,到現在的電子計算機,再到量子計算。筆者發現這其中的過程讓人思考:首先是人們發現用石頭或者棍棒可以幫助人們進行計算,隨后,人們發明了算盤,來幫助人們進行計算。當人們發現不僅人手可以搬動“算珠”,機器也可以用來搬動“算珠”,而且效率更高,速度更快。隨后,人們用繼電器替代了純機械,最后人們用電子代替了繼電器。就在人們改進計算工具的同時,數學家們開始對計算的本質展開了研究,圖靈機模型告訴了人們答案。
量子計算的出現,則徹底打破了這種認識與創新規律。它建立在對量子力學實驗的在現實世界的不可計算性。試圖利用一個實驗來代替一系列復雜的大量運算。可以說。這是一種革命性的思考與解決問題的方式。
因為在此之前,所有計算均是模擬一個快速的“算盤”,即使是最先進的電子計算機的CPU內部,64位的寄存器(register),也是等價于一個有著64根軸的二進制算盤。量子計算則完全不同,對于量子計算的核心部件,類似于古代希臘中的“神諭”,沒有人弄清楚神諭內部的機理,卻對“神諭”內部產生的結果深信不疑。人們可以把它當作一個黑盒子,人們通過輸入,可以得到輸出,但是對于黑盒子內部發生了什么和為什么這樣發生確并不知道。
9“神諭”的挑戰與人類自身的回應人類的思考能力,隨著計算工具的不斷進化而不斷加強。電子計算機和互聯網的出現,大大加強了人類整體的科研能力,那么,量子計算系統的產生,會給人類整體帶來更加強大的科研能力和思考能力,并最終解決困擾當今時代的量子“神諭”。不僅如此,量子計算系統會更加深刻的揭示計算的本質,把人類對計算本質的認識從牛頓世界中擴充到量子世界中。
如果觀察歷史,會發現人類文明不斷增多的“發現”已經構成了我們理解世界的“公理”,人們的公理系統在不斷的增大,隨著該系統的不斷增大,人們認清并解決了許多問題。人類的認識模式似乎符合下面的規律:
“計算工具不斷發展—整體思維能力的不斷增強—公理系統的不斷擴大—舊的神諭被解決—新的神諭不斷產生”不斷循環。
無論量子計算的本質是否被發現,也不會妨礙量子計算時代的到來。量子計算是計算科學本身的一次新的革命,也許許多困擾人類的問題,將會隨著量子計算機工具的發展而得到解決,它將“計算科學”從牛頓時代引向量子時代,并會給人類文明帶來更加深刻的影響。
參考文獻
[1]M.A.NielsenandI.L.Chuang,QuantumComputationandQuantumInformation[M].CambridgeUniversityPress,2000.
關鍵詞:計算科學計算工具圖靈模型量子計算
1計算的本質
抽象地說,所謂計算,就是從一個符號串f變換成另一個符號串g。比如說,從符號串12+3變換成15就是一個加法計算。如果符號串f是x2,而符號串g是2x,從f到g的計算就是微分。定理證明也是如此,令f表示一組公理和推導規則,令g是一個定理,那么從f到g的一系列變換就是定理g的證明。從這個角度看,文字翻譯也是計算,如f代表一個英文句子,而g為含意相同的中文句子,那么從f到g就是把英文翻譯成中文。這些變換間有什么共同點?為什么把它們都叫做計算?因為它們都是從己知符號(串)開始,一步一步地改變符號(串),經過有限步驟,最后得到一個滿足預先規定的符號(串)的變換過程。
從類型上講,計算主要有兩大類:數值計算和符號推導。數值計算包括實數和函數的加減乘除、冪運算、開方運算、方程的求解等。符號推導包括代數與各種函數的恒等式、不等式的證明,幾何命題的證明等。但無論是數值計算還是符號推導,它們在本質上是等價的、一致的,即二者是密切關聯的,可以相互轉化,具有共同的計算本質。隨著數學的不斷發展,還可能出現新的計算類型。
2遠古的計算工具
人們從開始產生計算之日,便不斷尋求能方便進行和加速計算的工具。因此,計算和計算工具是息息相關的。
早在公元前5世紀,中國人已開始用算籌作為計算工具,并在公元前3世紀得到普遍的采用,一直沿用了二千年。后來,人們發明了算盤,并在15世紀得到普遍采用,取代了算籌。它是在算籌基礎上發明的,比算籌更加方便實用,同時還把算法口訣化,從而加快了計算速度。
3近代計算系統
近代的科學發展促進了計算工具的發展:在1614年,對數被發明以后,乘除運算可以化為加減運算,對數計算尺便是依據這一特點來設計。1620年,岡特最先利用對數計算尺來計算乘除。1850年,曼南在計算尺上裝上光標,因此而受到當時科學工作者,特別是工程技術人員廣泛采用。機械式計算器是與計算尺同時出現的,是計算工具上的一大發明。帕斯卡于1642年發明了帕斯卡加法器。在1671年,萊布尼茨發明了一種能作四則運算的手搖計算器,是長1米的大盒子。自此以后,經過人們在這方面多年的研究,特別是經過托馬斯、奧德內爾等人的改良后,出現了多種多樣的手搖計算器,并風行全世界。
4電動計算機
英國的巴貝奇于1834年,設計了一部完全程序控制的分析機,可惜礙于當時的機械技術限制而沒有制成,但已包含了現代計算的基本思想和主要的組成部分了。此后,由于電力技術有了很大的發展,電動式計算器便慢慢取代以人工為動力的計算器。1941年,德國的楚澤采用了繼電器,制成了第一部過程控制計算器,實現了100多年前巴貝奇的理想。
5電子計算機
20世紀初,電子管的出現,使計算器的改革有了新的發展,美國賓夕法尼亞大學和有關單位在1946年制成了第一臺電子計算機。電子計算機的出現和發展,使人類進入了一個全新的時代。它是20世紀最偉大的發明之一,也當之無愧地被認為是迄今為止由科學和技術所創造的最具影響力的現代工具。
在電子計算機和信息技術高速發展過程中,因特爾公司的創始人之一戈登·摩爾(GodonMoore)對電子計算機產業所依賴的半導體技術的發展作出預言:半導體芯片的集成度將每兩年翻一番。事實證明,自20世紀60年代以后的數十年內,芯片的集成度和電子計算機的計算速度實際是每十八個月就翻一番,而價格卻隨之降低一倍。這種奇跡般的發展速度被公認為“摩爾定律”。
6“摩爾定律”與“計算的極限”
人類是否可以將電子計算機的運算速度永無止境地提升?傳統計算機計算能力的提高有沒有極限?對此問題,學者們在進行嚴密論證后給出了否定的答案。如果電子計算機的計算能力無限提高,最終地球上所有的能量將轉換為計算的結果——造成熵的降低,這種向低熵方向無限發展的運動被哲學界認為是禁止的,因此,傳統電子計算機的計算能力必有上限。
而以IBM研究中心朗道(R.Landauer)為代表的理論科學家認為到21世紀30年代,芯片內導線的寬度將窄到納米尺度(1納米=10-9米),此時,導線內運動的電子將不再遵循經典物理規律——牛頓力學沿導線運行,而是按照量子力學的規律表現出奇特的“電子亂竄”的現象,從而導致芯片無法正常工作;同樣,芯片中晶體管的體積小到一定臨界尺寸(約5納米)后,晶體管也將受到量子效應干擾而呈現出奇特的反常效應。
哲學家和科學家對此問題的看法十分一致:摩爾定律不久將不再適用。也就是說,電子計算機計算能力飛速發展的可喜景象很可能在21世紀前30年內終止。著名科學家,哈佛大學終身教授威爾遜(EdwardO.Wilson)指出:“科學代表著一個時代最為大膽的猜想(形而上學)。它純粹是人為的。但我們相信,通過追尋“夢想—發現—解釋—夢想”的不斷循環,我們可以開拓一個個新領域,世界最終會變得越來越清晰,我們最終會了解宇宙的奧妙。所有的美妙都是彼此聯系和有意義的7量子計算系統
量子計算最初思想的提出可以追溯到20世紀80年代。物理學家費曼RichardP.Feynman曾試圖用傳統的電子計算機模擬量子力學對象的行為。他遇到一個問題:量子力學系統的行為通常是難以理解同時也是難以求解的。以光的干涉現象為例,在干涉過程中,相互作用的光子每增加一個,有可能發生的情況就會多出一倍,也就是問題的規模呈指數級增加。模擬這樣的實驗所需的計算量實在太大了,不過,在費曼眼里,這卻恰恰提供一個契機。因為另一方面,量子力學系統的行為也具有良好的可預測性:在干涉實驗中,只要給定初始條件,就可以推測出屏幕上影子的形狀。費曼推斷認為如果算出干涉實驗中發生的現象需要大量的計算,那么搭建這樣一個實驗,測量其結果,就恰好相當于完成了一個復雜的計算。因此,只要在計算機運行的過程中,允許它在真實的量子力學對象上完成實驗,并把實驗結果整合到計算中去,就可以獲得遠遠超出傳統計算機的運算速度。
在費曼設想的啟發下,1985年英國牛津大學教授多伊奇DavidDeutsch提出是否可以用物理學定律推導出一種超越傳統的計算概念的方法即推導出更強的丘奇——圖靈論題。費曼指出使用量子計算機時,不需要考慮計算是如何實現的,即把計算看作由“神諭”來實現的:這類計算在量子計算中被稱為“神諭”(Oracle)。種種跡象表明:量子計算在一些特定的計算領域內確實比傳統計算更強,例如,現代信息安全技術的安全性在很大程度上依賴于把一個大整數(如1024位的十進制數)分解為兩個質數的乘積的難度。這個問題是一個典型的“困難問題”,困難的原因是目前在傳統電子計算機上還沒有找到一種有效的辦法將這種計算快速地進行。目前,就是將全世界的所有大大小小的電子計算機全部利用起來來計算上面的這個1024位整數的質因子分解問題,大約需要28萬年,這已經遠遠超過了人類所能夠等待的時間。而且,分解的難度隨著整數位數的增多指數級增大,也就是說如果要分解2046位的整數,所需要的時間已經遠遠超過宇宙現有的年齡。而利用一臺量子計算機,我們只需要大約40分鐘的時間就可以分解1024位的整數了。