前言:我們精心挑選了數篇優質電力法論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。
1.電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1.1整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。
1.2逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
1.3變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
2.現代電力電子的應用領域
2.1計算機高效率綠色電源
高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。
計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關電源
通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。
現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。
國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。
2.7大功率開關型高壓直流電源
大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。
國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。
電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關電源供電系統
分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。
八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。
3.高頻開關電源的發展趨勢
在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。
3.1高頻化
理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。
3.3數字化
在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。
3.4綠色化
電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。
現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。
1.1常見的竊電方式
用戶用電的信息全都記錄在了電能表上,一些不法分子的竊電方法也全都是針對電能表的。比如:對電能表內部結構做一些技術上的調整,就能實現電表轉速的減慢、停轉或者反轉,從而達到非法竊電的目的。筆者認為,現今的竊電措施主要體現在以下幾個方面:第一,無表竊電。這種方式表現為用戶沒有經過批準私自接線或者惡意破壞已裝的電能表,從而達到竊電的目的。第二,欠壓竊電。這種方式是通過采用某種手段改變電表內部的電壓線路或者造成線路故障使之計量異常來實施竊電的。第三,欠流竊電。這種方式是基于諸如二次開路等方法通過改變電表內部的電流回路使之電流異常,最終使電表會計量錯誤。第四,移相竊電。這種方式是通過改變電表內部的電壓和電流相位或者采用其他方法擾亂正常的電流電壓相位關系來實施竊電的。此外還出現了科技含量比較高的編程器竊電方式,具體是通過改變電能表的峰、平、谷的比例來避開高價時段,從而減低電費。
1.2非法竊電的特點探討
現如今,非法竊電呈現出各種各樣的特點。主要體現在:第一,主體多元化。以前的竊電主要是單個的用戶,分布范圍較小,社會危害程度低。但是隨著社會的發展,各方各業迅速發展起來,尤其是一些大企業考慮到采取一些竊電措施可以節約大量的經濟成本,這種情況下,其危害范圍不斷擴大,危害程度逐漸加深。第二,竊電的技術含量不斷提升。第三,現在的竊電案件涉及的資金數額越來越大,動輒就上幾萬乃至百萬。大規模的竊電不但對電力基礎設施有極大損害,而且容易引發一系列的安全事故,形成竊電基礎上的二次危害。
2非法竊電的原因和危害分析
2.1非法竊電的原因導致竊電的原因
是多樣化的,但是主要集中在以下幾個方面:第一,電力檢查跟不上。近年來,電力需求不斷增加,電力基礎設施正在大規模建設。盡管電力系統在高速發展,但是與之配套的電力檢查發展卻有些滯后,一方面電力檢查的人員隊伍建設進展較小,另一方面,電力檢查的技術標準沒有及時的更新,導致用電檢查的質量不斷下降,一些竊電行為難以察覺。第二,反竊電的技術相對比較落后。由于竊電的科技含量不斷增加,反竊電的技術措施必須及時跟進才能降低損失,但是現實情況是反竊電的技術仍然比較落后,甚至一些電力企業對有無竊電都無法正確的推算出來,也就難以做到及時跟蹤、監控并采取措施加以治理了。此外,由于法律法規、電力企業職能改變、電力檢查程序相對不完善等因素也造成了竊電問題頻頻發生。
2.2非法竊電的危害
毫無疑問竊電行為無論是對供電企業還是給社會都會造成一定的危害。首先,竊電會給供電企業帶來巨大的經濟損失,隨著現在竊電行為涉及的資金數額不斷加大,其經濟損失也在逐漸的擴大,電能是電力企業獲取經濟收益的基礎,正確的用電計量是電力企業正常收費的基本依據,竊電行為打破了這種關系,使電力企業蒙受了巨大的經濟損失。其次,竊電行為對電力基礎設施造成了一定的損害,對供電安全和用電安全都產生了消極的影響,埋下了許多安全隱患。現在,伴隨著竊電行為數量的不斷上升,電力事故和觸電人員傷亡數量也在逐漸上升,這必須引起我們的極大關注。
3電力行業針對反竊電采取的有效措施
3.1竊電線索的獲取竊電線索是發現竊電行為的基本前提
其獲取的主要方法有:第一,抄表員憑借經驗可以直接獲取,一些比較明顯的竊電行為比如:計量柜的封印被損壞、表計封印被開啟等直接就可以通過抄表員的工作經驗判斷出來。第二,供電所的工作人員根據配電線路的損耗報表仔細核對電表的抄表記錄,以發現存在問題的用電清單。比如:用戶的用電量在相鄰兩個月內出現徒增或者徒減的情況。對問題比較大的,要對用戶的用電情況仔細核對。第三,供電企業可以嘗試與稅務部門合作,通過計算企業產品單耗的平均值確定用戶的用電范圍,再與實際數據相比較,從而發現可疑的竊電對象。第四,采用某種獎勵的形式鼓勵廣大的人民群眾對竊電行為進行監督、舉報。第五,供電企業可以采用定期檢查或者不定期檢查的方式對用電用戶進行檢查,或者各個供電所采用交互檢查的形式,以便從中發現一些問題。
3.2反竊電的技術措施從技術原理上講
竊電行為主要分為兩大類:第一種是對用電計量設備動手腳,使之計量錯誤或計量實效;第二種是繞過計量裝置進行竊電,比如:在計量裝置前邊的一次回路上偷接電路,繞過計量裝置的計量,達到竊電的目的。據此我們可以針對性的采取一些技術措施:第一,對計量設備和計量柜都實行加封形式,計量設備加封以后安放在計量柜中。這樣一來,從根本上杜絕了不法分子對計量裝備做手腳的可能性。一旦封印被破壞或者采用偷接線路直接竊電的形式,都容易被電力工作人員直接察覺,獲取竊電線索。第二,對一些裝接容量比較大的企業用電用戶,在此基礎上還要采取附加的針對措施,比如:在計量柜門前再貼一個具有法律效力的專用封條等,封印條是否完好無損是判斷是否存在竊電行為的重要依據。第三,禁止無表接電。對于低壓的供電線路來說,采用絕緣化、電纜化的形式能有效的杜絕直接掛在電路上進行竊電的行為。第四,在變壓器低壓一側到計量柜接入端采用電纜出線形式再加上一些技術措施,可以防范繞越計量裝置進行竊電的行為。
3.3反竊電的組織措施
反竊電的組織措施主要是建立與電力基礎設施相配套的檢察隊伍,主要包含了兩個方面的考慮:第一,加強專業人員的引進。根據當地電力基礎設施建設和發展的情況,不斷引進電力檢查的專業工作人員,使之在層次結構和年齡結構上有積極的調整和轉變,以適應電力發展的人員需求。第二,加強企業內部技術人員的培訓,不斷提升業務水平。
4結語
摘要:將概率方法應用于電源規劃,結合**省“十一五”規劃進行發電可靠性評估和分析,對可靠性指標對應的經濟性等問題進行綜合技術經濟比較分析,探討2010年**電力系統發電可靠性指標的合理取值范圍。
電力系統可靠性是指電力系統按可接受的質量標準和所需數量不間斷地向電力用戶供應電力和電能量的能力的量度。研究發電可靠性的主要目標是確定電力系統為保證有充足的電力供應所需的發電設備容量。其分析方法有確定性的和概率性的2種,國內目前通常采用的是確定性方法,而概率性方法能較好地綜合各種因素的影響,其評估技術在國際上已經成熟。現階段,我國發電系統可靠性指標標準還沒有統一的規定,處于一種研究探索階段。本文結合**電網“十一五”規劃,對其發電可靠性進行評估和分析。
一、可靠性指標計算
預計2010年**省統調最大負荷為18200MW,用電量為93TW•h;統調主要電源裝機容量為20222.7MW(不含三峽電站和恩施州)。可靠性指標計算結果如下:2010年**電力系統電力不足期望值HLOLE為33.61h/a,電量不足期望值EENS為26332.8MW•h/a。
二、敏感性分析
為分析各相關因素對發電可靠性指標的影響程度,特從以下幾方面進行敏感性分析計算。
2.1負荷變化在其它各條件不變的情況下,最大負荷上下浮動,2010年**電力系統HLOLE值與負荷大小關系見圖1所示。負荷敏感性分析圖由圖1可見,負荷變化對發電可靠性指標有著明顯的作用,當最大負荷從推薦水平的120%減少時,HLOLE迅速降低,若負荷達到推薦負荷的105%,則HLOLE增加至基準負荷水平時的1.83倍;若負荷未達到推薦負荷水平(95%),則HLOLE僅為基準值的56.9%,HLOLE隨負荷變化趨勢減緩。由上可知,當負荷越處于高水平時,其變化對HLOLE的影響越大。由于負荷發展水平受多方面因素的影響,負荷預測不可能與實際一致。隨著社會的發展,負荷越來越高,其較小的變化相對值,也會導致較大的絕對值變化,而且電源建設存在一定的周期。因此,更應重視負荷的中長期預測,使之更接近實際水平,另一方面也說明在電源規劃中應確定合理的HLOLE的取值范圍,使之具有一定的適應能力。
2.2電源裝機由于電源建設項目受各方面因素影響較多,特別是在電力市場改革正在進行的今天,電源項目的投產期存在更多的不確定性。減少電源裝機對HLOLE有一定的影響,但略低于負荷變化的影響;而增加電源裝機對降低HLOLE的影響幅度小于因減少電源裝機導致電力不足期望值增加的幅度,即系統裝機容量越少,其變化對HLOLE的影響越大。從這一點也說明確定電力不足期望值的合理范圍的重要性。
2.3等效可用系數通過提高現有機組的等效可用系數,相當于增加系統的可用容量,經濟性方面優于新增機組方案。2005年**省火電機組的等效可用系數為91.90%,還具備一定的提高潛力。通過機組等效可用系數的浮動計算可知,隨著等效可用系數的提高,HLOLE不斷下降,在基準值上,可用系數平均降低4個百分點,相當于減少600MW的裝機容量,而增加1個百分點,其效果接近于增加300MW的裝機容量。因此加強技術水平和提高管理水平,提高機組的等效可用系數,在同樣裝機容量下,能有效地提高發電可靠性指標。
2.4強迫停運率2005年**省屬機組等效強迫停運率為2.18%。由于各機組的強迫停運率本身不高,因此其變化時對可靠性指標的影響相對要小些。機組強迫停運率在基準值基礎上,上下浮動30%對HLOLE的影響并不大,僅相差10%左右。即使機組強迫停運率增加一倍,對HLOLE的影響界于減少一臺300MW機組和減少一臺600MW機組之間;機組強迫停運率為零時,效果相當于增加一臺300MW機組和增加一臺600MW機組之間。
2.5電源結構**電力系統一個重要特點就是水電比重大,截止2005年底,**電力系統統調水電裝機比重高達65.8%,隨著三峽電站的建設投產以及水布埡等水電的開發建設,**電力系統水電比重仍將維持較高的比重。下面通過擬定不同的電源結構方案,其可靠性指標計算結果。可見,不同的電源構成對電力不足期望值HLOLE有影響,一般來看,相同裝機容量下,火電裝機容量比重高的系統其HLOLE要低一些,主要是因為水電存在受阻容量。從逐月計算結果看,火電裝機容量比重高的系統枯水期HLOLE明顯低于火電裝機容量比重少的系統,主要是因為水電枯水期空閑容量的增加,使其可用裝機減少。水火電的替代容量在0.875左右。當然,水電出力受各方面因素影響較多,計算結果與各個水電站有關,也與水電站的設計保證率有關。
2.6火電機組檢修**電力系統水電機組檢修一般安排在枯水季節,不影響電站出力。通過縮短火電機組的檢修時間,可提高發電可靠性指標。火電機組檢修周期提高30%,其效果相當于減少系統一臺300MW的裝機;而降低30%,其效果界于增加系統一臺300MW和600MW的裝機之間。
2.7與電力電量平衡程序計算結果對照現階段,電源規劃軟件常用的是華中科技大學編制的《聯合電力系統運行模擬軟件(WHPS2000)》,因此,特對該軟件計算結果與發電可靠性計算指標進行對照。注:表中備用系數不包含機組檢修備用。可見,隨著備用系數的取值不斷下降,發電可靠性指標不斷增大,也就表明系統的發電可靠性變差,基本上是備用系數降低0.01,發電裝機可減少200MW,發電可靠性指標增加10%左右。由上述各計算結果可見,負荷水平和裝機容量的變化對可靠性指標影響最大。從電源構成看,相同裝機容量下,水電比重大的系統其可靠性要差些,2010年**省的水電替代容量在0.875左右,從這方面看,水電比重大的區域備用系數應高一些;從機組本身看,提高其等效可用系數比降低機組的強迫停運率的效果明顯;另外,在可靠性指標計算中,檢修是根據等備用原則安排,實際生產中,合理安排檢修計劃,提高機組的計劃檢修水平,逐步開展狀態檢修方法,也是提高發電可靠性的措施之一。
三、技術經濟綜合比較
任何可靠性水平總是與經濟性密切相關,當電力系統越來越復雜、電力用戶對供電質量的要求不斷提高時,就需要用科學的可靠性理論來進行定量的研究。我國作為一個發展中國家,受到多種因素包括經濟以及政治、社會因素的影響,一般認為可靠性指標的取值宜在1~2d/a之間。
停電損失與裝機成本計算與發電可靠性有關的指標是由電能價格來維持的,發電可靠性并非越高越好,需綜合考慮投資、停電損失及用戶的電價承受能力。發電可靠性成本就是電源建設的投資成本以及運行成本,而可靠性效益計算卻比較難,在進行成本-效益分析時,一般將可靠性效益計算轉化為對用戶的缺電成本計算。缺電成本計算與國民經濟發展狀況、國情、電力系統發展水平等多種因素有關,目前采用的有以下幾種簡單的估算方法。(1)按GDP計算,即按每缺1kW•h電量而減少的國民生產總值計算平均缺電成本。(2)按電價倍數計算,根據對各類用戶進行缺電損失的調查和分析,用平均電價的倍數來估算缺電成本。如英國、法國、瑞典等。(3)按缺電功率、缺電量、缺電持續時間及缺電頻率計算,如美國等。以下分析僅考慮上述第一和第二種方法。2005年**省每kW•h電量對應的GDP為9.62元,預計2010年停電損失費可達到12.3~15.5元/(kW•h);另一方面,目前,**省綜合電價水平在0.4元/(kW•h)左右,按50倍電價水平計算得到停電損失費用約為20元/(kW•h)。根據國產2×600MW機組的造價水平,折算到每年的發電成本約為900元/kW•a-1。據此,我們可以算出裝機變化成本與停電損失費用,進行成本-效益分析。可見,當停電損失費用取15元/(kW•h),裝機成本始終超過停電損失;當停電損失費用取20元/(kW•h),按成本-效益分析,可減少裝機容量在1800~2400MW之間;當停電損失費用取25元/(kW•h),可減少裝機容量在1200~1800MW之間;當停電損失費用取30元/(kW•h),可減少裝機容量在600~900MW之間;當停電損失費用取40元/(kW•h),可減少裝機容量在0~300MW之間。