本站小編為你精心準備了高層建筑設計參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
一、結構分析與設計特點
(一)水平載荷成為決定因素
任何一個建筑結構都要同時承受垂直荷載和風產生的水平荷載,還要具有抵抗地震作用的能力。在較低樓房中,往往是以重力為代表的豎向荷載控制著結構設計,水平荷載產生的內力和位移很小,對結構的影響也就較小;但在較高樓房中盡管豎向荷載仍對結構設計產生著重要影響,水平荷載卻起著決定性的作用。隨著樓房層數的增多,水平荷載愈益成為結構設計中的控制因素。一方面,因為樓房自重和樓面使用荷載在豎構件中所引起的軸力和彎矩的數值,僅與樓房高度的一次方成正比;而水平荷載對結構產生的傾覆力矩,以及由此在豎構件中所引起的軸力,是與樓房高度的兩次方成正比;另一方面對某一高度樓房來說,豎向荷載的風荷載和地震作用,其數值隨結構動力特性的不同而有較大幅度的變化。
(二)軸向變形不容忽視
通常在低層建筑結構分析中,只考慮彎矩項,因為軸力項影響很小,而剪切項一般可不考慮。但對于高層建筑結構,情況就不同了。由于層數多,高度大,軸力值很大,再加上沿高度積累的軸向變形顯著,軸向變形會使高層建筑結構的內力數值與分布產生顯著的改變。對連續梁彎矩的影響:采用框架體系和框-墻體系的高樓中,框架中柱的軸壓應力往往大于邊柱的軸壓應力,中柱的軸向壓縮變形大于邊柱的軸向壓縮變形。當房屋很高時,此種差異軸向變形將會達到較大的數值,其后果相當于連續梁的中間支座產生沉陷,從而使連續梁中間支座處的負彎矩值減小,跨中正彎矩值和端支座負彎矩增大。對構件剪力和側移的影響,與考慮豎向桿件軸向變形的剪力相比較,不考慮豎桿件軸向變形時,各構件水平剪力的平均誤差達30%以上,結構頂點側移減小一半以上。
(三)側移成為控制指標
與低層建筑不同,結構側移已成為高層建筑結構設計中的關鍵因素,隨著樓層的增加,水平荷載作用下結構的側向變形迅速增大。設計高層結構時,不僅要求結構具有足夠的強度,能夠可靠地承受風荷載作用產生的內力;還要求具有足夠的抗側剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,保證良好的居住和工作條件。
(四)結構延性是重要設計指標
相對低層結構而言,高層結構更柔一些,在地震作用下的變形更大一些。為了使建筑在進入塑性變形階段后仍具有較強的變形能力,避免倒塌,特別需要在構造上采以恰當的措施,來保證結構具有足夠的延性。
二、高層家住結構體系結構
當框架體系的強度和剛度不能滿足要求時,往往需要在建筑平面的適當位置設置較大的剪力墻來代替部分框架,便形成了框架—剪力墻體系。在承受水平力時,框架和剪力墻通過有足夠剛度的樓板和連梁組成協同工作的結構體系。在體系中框架體系主要承受垂直荷載,剪力墻主要承受水平荷載。框架—剪力墻體系的位移曲線呈彎剪型。
當受力主體結構全部由平面剪力墻構件組成時,即形成剪力墻體系。在剪力墻體系中,單片剪力墻承受了全部的垂直荷載和水平力。剪力墻體系屬剛性結構其位移曲線呈彎曲型。剪力墻體系的強度和剛度都比較高,有一定的延性,傳力直接均勻,整體性好,抗倒塌能力強,是一種良好的結構體系,能建高度大于框架或框架—剪力墻體系。
凡采用筒體為抗側力構件的結構體系統稱為筒體體系,包括單筒體、筒體—框架、筒中筒、多束筒等多種型式。筒體是一種空間受力構件,分實腹筒和空腹筒兩種類型。實腹筒是由平面或曲面墻圍成的三維豎向結構單體,空腹筒是由密排柱和窗裙梁或開孔鋼筋混凝土外墻構成的空間受力構件。筒體體系具有很大的剛度和強度,各構件受力比較合理,抗風、抗震能力很強,往往應用于大跨度、大空間或超高層建筑。
三、高層建筑結構分析與設計方法
高層建筑結構是由豎向抗側力構件(框架、剪力墻、筒體等)通過水平樓板連接構成的大型空間結構體系。要完全精確地按照三維空間結構進行分析是十分困難的。各種實用的分析方法都需要對計算模型引入不同程度的簡化。下面是常見的一些基本假定:彈性假定;小變形假定;剛性樓板假定;計算圖形的假定。
對于框架-剪力墻體系來說,框架-剪力墻結構內力與位移計算的方法很多,大都采用連梁連續化假定。由剪力墻與框架水平位移或轉角相等的位移協調條件,可以建立位移與外荷載之間關系的微分方程來求解。由于采用的未知量和考慮因素的不同,各種方法解答的具體形式亦不相同。框架-剪力墻的機算方法,通常是將結構轉化為等效壁式框架,采用桿系結構矩陣位移法求解。剪力墻的受力特性與變形狀態主要取決于剪力墻的開洞情況。單片剪力墻按受力特性的不同可分為單肢墻、小開口整體墻、聯肢墻、特殊開洞墻、框支墻等各種類型。不同類型的剪力墻,其截面應力分布也不同,計算內力與位移時需采用相應的計算方法。剪力墻結構的計算方法是平面有限單元法。筒體結構的分析方法按照對計算模型處理手法的不同可分為三類:等效連續化方法、等效離散化方法和三維空間分析。等效連續化方法是將結構中的離散桿件作等效連續化處理;等效離散化方法是將連續的墻體離散為等效的桿件,以便應用適合桿系結構的方法來分析;比等效連續化和等效離散化更為精確的計算模型是完全按三維空間結構來分析筒體結構體系,其中應用最廣的是空間桿-薄壁桿系矩陣位移法。
四、抗震分析與設計在高層建筑的應用
在罕遇地震作用下,抗震結構都會部分進入塑性狀態。為了滿足大震作用下結構的功能要求,有必要研究和計算結構的彈塑性變形能力。當前國內外抗震設計的發展趨勢,是根據對結構在不同超越概率水平的地震作用下的性能或變形要求進行設計,結構彈塑性分析成為抗震設計的必要的組成部分。我國現行抗震規范(GB50011-2001)要求高層建筑的抗震計算主要是在多遇地震作用下(小震),按反應譜理論計算地震作用,用彈性方法計算內力及位移。對于重要建筑或有特殊要求時,要用時程分析法補充計算,并進行罕遇地震作用下(大震)的變形驗算。
在我國高層建筑的抗震分析與設計中常見的問題有以下幾種:首先是高度問題,對于超高限建筑物,應當采取科學謹慎的態度。因為在地震力作用下,超高限建筑物的變形破壞性態會發生很大的變化,隨著建筑物高度的增加,許多影響因素將發生質變,即有些參數本身超出了現有規范的適宜范圍,如安全指標、延性要求、材料性能、荷載取值、力學模型選取等。其次是材料選用和結構體系的問題,在高層建筑中,我國150m以上的建筑,采用的三種主要結構體系(框-筒、筒中筒和框架-支撐),這些也是其他國家高層建筑采用的主要體系。但國外特別在地震區,是以鋼結構為主,而在我國鋼筋混凝土結構及混合結構占了90%。如此高的鋼筋混凝土結構及混合結構,國內外都還沒有經受較大地震作用的考驗。根據現在我國建筑鋼材的類型、品種和鋼結構的加工制造能力,建議盡可能采用鋼骨混凝土結構、鋼管混凝土(柱)結構或鋼結構,以減小柱斷面尺寸,并改善結構的抗震性能。第三是軸壓比與短柱問題,在鋼筋混凝土高層建筑結構中,往往為了控制柱的軸壓比而使柱的截面很大,而柱的縱向鋼筋卻為構造配筋。柱的塑性變形能力小,則結構的延性就差,當遭遇地震時,耗散和吸收地震能量少,結構容易被破壞。第四,在某些烈度區采用了較低的抗震措施與構造措施,現在許多專家學者提出,現行的建筑結構設計安全度已不能適應國情的需要,認為我國“取用了可能是世界上最低的結構設計安全度”并主張“建筑結構設計的安全度水平應該大幅度提高”。有人主張在設防烈度下應該采用彈性設計,特別是高烈度區要有嚴格的抗震措施與抗震構造措施來保證結構的安全。
五、結語
結構設計是一項集結構分析,數學優化方法以及計算機技術于一體的綜合性技術工作,是一項對國家建設有重大意義的工作,同時,亦是一門實用性很強的工作。本文就高層建筑的結構設計的各個方面進行分析,一起有助于提高結構工程師在建筑空間中的設計能力,特別是在處理高層建筑方面的問題上。
摘要:文章從分析高層建筑的設計特點出發,以高層建筑結構設計理論為基礎,分析高層建筑結構體系類型,從而得到高層建筑分析與設計方法,最后討論了高層建筑的抗震分析等方面。
關鍵詞:高層建筑;結構設計;選型;結構體系;水平載荷