在线观看国产区-在线观看国产欧美-在线观看国产免费高清不卡-在线观看国产久青草-久久国产精品久久久久久-久久国产精品久久久

美章網(wǎng) 精品范文 同步技術論文范文

同步技術論文范文

前言:我們精心挑選了數(shù)篇優(yōu)質同步技術論文文章,供您閱讀參考。期待這些文章能為您帶來啟發(fā),助您在寫作的道路上更上一層樓。

同步技術論文

第1篇

摘要:

網(wǎng)絡同步和時鐘產(chǎn)生是高速傳輸系統(tǒng)設計的重要方面。為了通過降低發(fā)射和接收錯誤來提高網(wǎng)絡效率,必須使系統(tǒng)的各個階段都要使用的時鐘的質量保持特定的等級。網(wǎng)絡標準定義同步網(wǎng)絡的體系結構及其在標準接口上的預期性能,以保證傳輸質量和傳輸設備的無縫集成。有大量的同步問題,系統(tǒng)設計人員在建立系統(tǒng)體系結構時必須十分清楚。本文論述了時鐘惡化的各種來源,如抖動和漂移。本文還討論了傳輸系統(tǒng)中時鐘惡化的原因和影響,并分析了標準要求,提出了各種實現(xiàn)技巧。

基本概念:抖動和漂移

抖動的一般定義可以是“一個事件對其理想出現(xiàn)的短暫偏離”。在數(shù)字傳輸系統(tǒng)中,抖動被定義為數(shù)字信號的重要時刻在時間上偏離其理想位置的短暫變動。重要時刻可以是一個周期為T1的位流的最佳采樣時刻。雖然希望各個位在T的整數(shù)倍位置出現(xiàn),但實際上會有所不同。這種脈沖位置調制被認為是一種抖動。這也被稱為數(shù)字信號的相位噪聲。在下圖中,實際信號邊沿在理想信號邊沿附近作周期性移動,演示了周期性抖動的概念。

圖1.抖動示意

抖動,不同于相位噪聲,它以單位間隔(UI)為單位來表示。一個單位間隔相當于一個信號周期(T),等于360度。假設事件為E,第n次出現(xiàn)表示為tE[n]。則瞬時抖動可以表示為:

一組包括N個抖動測量的峰到峰抖動值使用最小和最大瞬時抖動測量計算如下:

漂移是低頻抖動。兩者之間的典型劃分點為10Hz。抖動和漂移所導致的影響會顯現(xiàn)在傳輸系統(tǒng)的不同但特定的區(qū)域。

抖動類型

根據(jù)產(chǎn)生原因,抖動可分成兩種主要類型:隨機抖動和確定性抖動。隨機抖動,正如其名,是不可預測的,由隨機的噪聲影響如熱噪聲等引起。隨機抖動通常發(fā)生在數(shù)字信號的邊沿轉換期間,造成隨機的區(qū)間交叉。毫無疑問,隨機抖動具有高斯概率密度函數(shù)(PDF),由其均值(μ)和均方根值(rms)(σ)決定。由于高斯函數(shù)的尾在均值的兩側無限延伸,瞬時抖動和峰到峰抖動可以是無限值。因此隨機抖動通常采用其均方根值來表示和測量。

圖2.以高斯概率密度函數(shù)表示的隨機抖動

對抖動余量來講,峰到峰抖動比均方根抖動更為有用,因此需要把隨機抖動的均方根值轉換成峰到峰值。為將均方根抖動轉換成峰到峰抖動,定義了隨機抖動高斯函數(shù)的任意極限(arbitrarylimit)。誤碼率(BER)是這種轉換中的一個有用參數(shù),其假設高斯函數(shù)中的瞬時抖動一旦落在其強制極限之外即出現(xiàn)誤碼。通過下面兩個公式,就可以得到均方根抖動到峰到峰抖動的換算。3

由公式可得到下表,表中峰到峰抖動對應不同的BER值。

確定性抖動是有界的,因此可以預測,且具有確定的幅度極限。考慮集成電路(IC)系統(tǒng),有大量的工藝、器件和系統(tǒng)級因素將會影響確定性抖動。占空比失真(DCD)和脈沖寬度失真(PWD)會造成數(shù)字信號的失真,使過零區(qū)間偏離理想位置,向上或向下移動。這些失真通常是由信號的上升沿和下降沿之間時序不同而造成。如果非平衡系統(tǒng)中存在地電位漂移、差分輸入之間存在電壓偏移、信號的上升和下降時間出現(xiàn)變化等,也可能造成這種失真。

圖3,總抖動的雙模表示

數(shù)據(jù)相關抖動(DDJ)和符號間干擾(ISI)致使信號具有不同的過零區(qū)間電平,導致每種唯一的位型出現(xiàn)不同的信號轉換。這也稱為模式相關抖動(PDJ)。信號路徑的低頻截止點和高頻帶寬將影響DDJ。當信號路徑的帶寬可與信號的帶寬進行比較時,位就會延伸到相鄰位時間內,造成符號間干擾(ISI)。低頻截止點會使低頻器件的信號出現(xiàn)失真,而系統(tǒng)的高頻帶寬限制將使高頻器件性能下降。7

正弦抖動以正弦模式調制信號邊沿。這可能是由于供給整個系統(tǒng)的電源或者甚至系統(tǒng)中的其他振蕩造成。接地反彈和其他電源變動也可能造成正弦抖動。正弦抖動廣泛用于抖動環(huán)境的測試和仿真。不相關抖動可能由電源噪聲或串擾和其他電磁干擾造成。

考慮抖動對數(shù)字信號的影響時,需要將整個確定性抖動和隨機抖動考慮在內。確定性抖動和隨機抖動的總計結果將產(chǎn)生另外一種概率分布4:雙模響應,其中部表示確定性抖動,尾部為高斯響應,表示隨機抖動分量。

抖動測量—TIE、MITE和TEDV

時間間隔誤差(TIE)是通過對實際時鐘間隔的測量和對理想?yún)⒖紩r鐘同一間隔的測量得到的。在給定時間t,以一個稱為觀測間隔的時間間隔產(chǎn)生時間T(t)的時鐘,其相對于時鐘Tref(t)的TIE可通過下面公式表示。(x(t)稱為誤差函數(shù)。)

TIE表示信號中的高頻相位噪聲,提供了實際時鐘的每個周期偏離理想情況的直接信息。TIE用于計算大量統(tǒng)計派生函數(shù)如MTIE、TDEV等。

最大時間間隔誤差(MTIE)定義為,在一個觀測時間(t=nt0)內,一個給定時鐘信號相對于一個理想時鐘信號的最大峰到峰延遲變化,其中該長度的所有觀測時間均在測量周期(T)之內。使用下面公式進行估計:

MTIE是針對時間的緩變或漂移而定義的。當需要分析時鐘的長期特性時,就需要對MTIE進行測量。MTIE值是對一個時鐘信號的長期穩(wěn)定性的一種衡量。

圖4.TIE的圖形表示

TDEV是另外一個統(tǒng)計參數(shù),作為集成時間的函數(shù)對一個信號的預期時間變化的測量。DEV也能提供有關信號相位(時間)噪聲頻譜分量的信息。TIE圖中每個點的標準偏差是對一個觀測間隔計算的,該觀測間隔滑過整個測量時間。該值在整個上述測量時間內進行平均以得到該特定間隔的TDEV值。增大觀測間隔,重復測量過程。TDEV是對短期穩(wěn)定性的一種衡量,在評估時鐘振蕩器性能時有用。TDEV屬于時間單位。

高速傳輸系統(tǒng)中抖動和漂移的原因

最常用的一種時鐘體系結構是,在備板上運行一個低頻時鐘,在每個傳輸卡上產(chǎn)生同步的高頻時鐘。低頻時鐘在集成電路內或通過分立PLL實現(xiàn)進行倍頻以產(chǎn)生高頻時鐘。通過典型的PLL倍頻,倍頻后時鐘上的相位噪聲增大為原來時鐘相位噪聲的20*log(N)次方,其中N為倍頻系數(shù)。此外,PLL參考時鐘輸入上的抖動將延長鎖定時間,且當輸入抖動過大時高速PLL甚至無法實現(xiàn)鎖定。在備板上采用一種更高速的差分時鐘將比采用低速單端時鐘具有更好的抖動性能。

由于VCO對輸入電壓變化較為敏感,因此電源噪聲是增大時鐘抖動的一個主要因素。輸出時鐘抖動幅度與電源噪聲幅度、VCO增益成正比,與噪聲頻率成反比。因導線電阻形成的電阻下降和因導線電感形成的電感噪聲而造成的電源或接地反彈,會對上述輸出時鐘抖動產(chǎn)生相似的影響。在系統(tǒng)板上對電源進行充分過濾,靠近集成電路電源引腳提供去耦電容,可以確保PLL獲得更高的抖動性能。

在系統(tǒng)板內,時鐘和數(shù)據(jù)相互獨立,發(fā)射和接收端在啟動、保持和延遲時間方面的變化對高速率非常關鍵。因數(shù)據(jù)和時鐘路徑中存在不同有源元件而使數(shù)據(jù)和時鐘路徑之間出現(xiàn)傳播延遲差異,時鐘路徑之間的接線延遲差異,數(shù)據(jù)位之間的接線延遲差異,數(shù)據(jù)和時鐘路徑之間不同的負載情況,分組長度差異等等,均可能造成上述變化。在規(guī)劃系統(tǒng)抖動余量時,必須將不同信號路徑的變化考慮在內。

當在一段距離上進行傳輸時,在發(fā)射機和接收機中的很多點上存在抖動累積。在發(fā)射機物理層實現(xiàn)中,DAC非線性或激光非線性等非線性特性會加重信號失真。在傳輸介質和接收機中,除了外部亂真源(大多在銅導線中)之外,因不同頻率和調制效應而導致的光纖失真、因接收機實現(xiàn)(主要與帶寬有關)和時鐘提取電路實現(xiàn)而導致的信號相關相位偏離,會加重信號流的抖動。

圖5.來自TIE圖的MTIE偏差

具體到SDH(同步數(shù)字系列)傳輸,有大量的系統(tǒng)級事件會導致抖動。在將PDH(準同步數(shù)字系列)支路映射為SDH幀并通過SDHNE(網(wǎng)絡組件)進行傳輸?shù)牡湫蛡鬏斚到y(tǒng)中,在PDH支路于SDH的終端多路分配器解映射之前,將在每個中間節(jié)點處出現(xiàn)VC(虛擬容器)的重新同步。有間隙的時鐘用于將各個支路映射到STM-N幀和從STM-N幀解映射,發(fā)出與開銷、固定填充和調整位相應的脈沖,因而造成映射抖動。采用調整機會位補償PDF支路中頻率偏移的方法會造成等待時間抖動。還有指針調整機制,用于對來自初始NE的輸入VC與本地產(chǎn)生的輸出STM-N幀之間的相位波動進行補償。根據(jù)頻率偏離,VC在STM-N幀中前后移動。這將使VC提取點看到位流中的突然變化,導致稱為指針抖動的類型抖動。所有上述系統(tǒng)級抖動都將加重總的確定性抖動。

盡管所有上述因素都會加重從源到目的地之間信號傳播的抖動,標準要求仍然規(guī)定在傳輸點需具有比理論值更低的抖動數(shù)值。這樣,考慮到時鐘倍頻、電源變化、電-光-電轉換、發(fā)射和接收影響以及其他致使實際信號惡化的失真信號的影響,在源處驅動信號的時鐘將具有一個相對很低的抖動數(shù)值。

抖動對收發(fā)器的影響

理想情況下,數(shù)字信號是在兩個相鄰電平轉換點的中點進行采樣的。抖動之所以會造成誤碼,是由于相對于理想中點,它改變了信號的邊沿轉換點。誤碼可能由于信號流邊沿變化太晚(在時間上比理想中點晚0.5UI(單位間隔相當于信號的一個周期))或太早(在時間上比理想中點早0.5UI)所致。當時鐘采樣邊沿在信號流的任何一側錯過0.5UI時,將出現(xiàn)50%的誤碼概率,假設平均轉換密度為0.5。7如果分別知道確定性抖動和隨機抖動,可通過上述兩個數(shù)字和將峰到峰抖動值與均方根抖動值聯(lián)系在一起的表,來估計誤碼率。校準抖動,定義為數(shù)字信號的最佳采樣時刻與從其提取出來的采樣時鐘之間的短期變化,可以造成上述誤碼。對于商業(yè)應用,源時鐘和源發(fā)射接口抖動規(guī)范將遠遠低于1UI。

發(fā)射接口抖動規(guī)范通常與接收端的輸入抖動容限相匹配。對于抖動測量回路濾波器截止頻率,尤其如此。例如,在SDH系統(tǒng)中,有兩種抖動測量帶寬,分別規(guī)定:一個用于寬帶測量濾波器(f1到f4),一個用于高頻帶測量濾波器(f3到f4)。數(shù)值f1指可在線路系統(tǒng)的PLL中使用的輸出時鐘信號的最窄時鐘截止頻率。低于此帶寬的頻率的抖動將通過系統(tǒng),而較高頻率的抖動則被部分吸收。數(shù)值f3表示輸入時鐘捕獲電路的帶寬。高于此頻率的抖動將導致校準抖動。校準抖動造成光功率損失,需要額外光功率以防各種惡化。因此限制發(fā)射機端高頻帶頻譜的抖動十分重要。

漂移對收發(fā)器的影響

市場上銷售的大多數(shù)電信接收機都使用了一個緩沖器,以適應線路信號中存在的隨機波動。下面框圖6詳細表示出這一概念。恢復時鐘將數(shù)據(jù)送入富有彈性的緩沖器,而系統(tǒng)時鐘則將數(shù)據(jù)送出到設備的核心部位。

在準同步傳輸系統(tǒng)中,發(fā)射機和接收機工作在相互獨立而又極為接近的頻率上,fL和Fs分別表示發(fā)射機和接收機的頻率。當兩者之間存在相位或頻率差異時,彈性存儲會將其消除,否則緩沖器將出現(xiàn)欠載或溢出(取決于差異的幅度和彈性緩沖器的大小),造成一次可控的幀滑動(基本速率傳輸)或一次位調整(高階異步多路復用器)。

在準同步應用中,根據(jù)可接受的緩沖滑動對頻率變化和緩沖器深度進行了標準化。最初的網(wǎng)絡主要用于語音傳輸,在一定的頻率門限之下不會造成語音質量下降。ITU-T規(guī)范規(guī)定該變化為+/-50ppm。但是隨著網(wǎng)絡開始傳送壓縮語音、傳真格式的數(shù)據(jù)、視頻以及其他種類的媒體應用,對于差錯和重傳以及剛剛興起的同步網(wǎng)絡,滑動使效率嚴重下降。

在同步傳輸系統(tǒng)中,系統(tǒng)時鐘通常同步到用于接收更高時鐘等級信號的接口的恢復時鐘上。恢復時鐘和系統(tǒng)時鐘之間相位和頻率的瞬時和累積差異將被彈性緩沖器吸收,否則將導致彈性存儲器溢出/欠載(取決于緩沖器大小和變化的幅度),造成指針調整而延遲或提前幀傳輸、幀滑動或系統(tǒng)中某處出現(xiàn)位調整。

在同步系統(tǒng)中,所有網(wǎng)絡組件工作在同一平均頻率,可以通過指針機制消除幀惡化。這些指針機制將提前或延遲有效載荷在傳輸幀中的位置,從而調整接收和系統(tǒng)時鐘中存在的頻率和相位變化。SDH收發(fā)器中的緩沖器比PDH收發(fā)器中的要小,而且對于SDH系統(tǒng)中可能導致的指針移動等不規(guī)則性有限制。因此,與PDH系統(tǒng)相比,同步系統(tǒng)的要求更為嚴格。由于網(wǎng)絡發(fā)展的歷史和不同網(wǎng)絡之間的互操作連接,在某些階段或其他階段,這些同步網(wǎng)絡會通過準同步網(wǎng)絡來連接。因此PDH網(wǎng)絡的時鐘體系結構也要考慮在內。

MTIE提供了時鐘相對于已知理想?yún)⒖紩r鐘的峰值時間變化。在同步傳輸和交換設備的彈性緩沖器的設計中將用到MTIE值。在彈性存儲中,緩沖器填充水平與輸入數(shù)字信號和本地系統(tǒng)時鐘之間的TIE成正比。確保時鐘符合有關MTIE的時鐘規(guī)范,將保證不會超過一定的緩沖器門限。因此,在緩沖器設計中,其大小取決于MTIE的規(guī)定極限。

圖6,典型傳輸系統(tǒng)的接收機接口

系統(tǒng)時鐘輸出相位擾動對收發(fā)器的影響

一個時鐘的輸出相位變化可以通過分析其MTIE信息獲得。漂移產(chǎn)生(在自由振蕩模式和同步模式中)主要指系統(tǒng)中所用時鐘振蕩器的長期穩(wěn)定性,在自由振蕩模式中系統(tǒng)的穩(wěn)定性僅受振蕩器的穩(wěn)定性影響。除了漂移產(chǎn)生之外,輸出時鐘相位還受到大量系統(tǒng)不規(guī)則特性的影響。

特別是對一個系統(tǒng)同步器而言,將參考源從一個不良或惡化參考時鐘轉換到一個正常參考時鐘可能會導致輸出相位擾動。傳輸用高速PLL中使用的傳統(tǒng)VCO(壓控振蕩器)在改變參考時鐘時采用了切換電容器組的方法。這種切換轉換會對輸出時鐘造成暫時的相位偏移。采用超低抖動時鐘倍頻器電路可以解決這個問題。

高性能網(wǎng)絡時鐘在系統(tǒng)的所有參考時鐘都失去時采用一種稱為“保持”的機制。這是通過記憶存儲技術產(chǎn)生系統(tǒng)最后一個已知良好參考時鐘來實現(xiàn)的。進入和退出保持模式可能會對輸出造成相位擾動。當處于保持模式中時,由于準確頻率的再生不夠精確,因此會繼續(xù)產(chǎn)生輸出相位誤差。集成電路技術的進步已使保持精度達到了0.01ppb。輸入?yún)⒖紩r鐘惡化和對系統(tǒng)的維護測試(不會導致參考時鐘切換)過少,也會造成輸出相位擾動。

系統(tǒng)輸出擾動是有限的,取決于系統(tǒng)在較低層次可以接受的輸入容限。例如,符合G.813選項1的時鐘,其相位擾動中所允許的相位斜率和最大相位誤差被限制為1μS,最大相位斜率為7.5ppm,兩個120ns相位誤差段,其余部分的相位斜率為0.05ppm。這些數(shù)字對應于G.825標準規(guī)定的輸入抖動容限,該標準描述了在SDH網(wǎng)絡內對抖動和漂移的控制。

當輸出相位被擾動時,將相位誤差的幅度和速率保持在標準組織所建議的極限之內,可確保在端到端系統(tǒng)中對信號惡化進行妥善處理,從而避免數(shù)據(jù)損壞或丟失。例如,當系統(tǒng)同步器進行參考時鐘切換時,如果輸出相位誤差位于規(guī)范要求之內,同步器就可實現(xiàn)“無間斷”參考時鐘切換,指示存在緩沖器溢出或欠載,造成指針移動、位調整或滑動。

第2篇

21世紀是一個多元化的世紀,以計算機和網(wǎng)絡為核心的信息技術異軍突起,在社會各個領域廣泛應用。作為引導時代新潮流的教育行業(yè),必然首當其沖的受其影響,這就要求每一位教育工作者都要迅速更新自己的教育思想理念,發(fā)展現(xiàn)代技術在教學中的應用。

縱觀全國的教育改革,正是如火如荼之時:開創(chuàng)校園網(wǎng)站,建立計算機網(wǎng)絡教室,網(wǎng)上教學,多媒體課件等等,多種形式齊頭并進。在這種探索過程當中,也清楚地讓我們看到:現(xiàn)代技術應用于教育是對教育本身一個質的突破。

舊式的教學,課堂是教師的舞臺,一本書,一塊黑板,一支粉筆,就要“獨攬?zhí)煜隆保瑳]有給學生充分自由思考的時間,沒有讓學生有創(chuàng)新的機會,更不利于挖掘學生的潛能,培養(yǎng)學生的能力,現(xiàn)在我們把它叫做“說教式”、“灌輸式”,看來是無可厚非的。那又是不是說只要在教育中應用現(xiàn)代技術就可以改變這種局面了呢?我認為也不然,光有現(xiàn)代的技術,沒有先進的思想同樣是不行的。如今,在我們教師隊伍中,還存在著這種現(xiàn)象:有教師認為開展信息技術教育占用了教學時間,影響升學率;大部分教師對現(xiàn)代技術的駕駛水平還偏低;有的教師雖然會使用現(xiàn)代技術,但不會處理它與教學之間的關系。針對這種現(xiàn)象,我們就只有在發(fā)展現(xiàn)代教育技術的同時,努力的改革教育思想理念。

那要從哪些方面來改革教育思想理念呢?我認為:

一、教育觀念的轉變

    要發(fā)展現(xiàn)代教育技術,首先廣大的教育工作者就必須有一個明確的認識:“什么是現(xiàn)代教育技術?為什么要發(fā)展?以及怎樣發(fā)展的問題?”我們要加強這方面的理論學習,明確現(xiàn)代技術在教育中發(fā)揮的重要作用,同時,也要不斷完善自身素質,使自己能游刃自如的操縱各種現(xiàn)代化教育手段。

二、教學方法的改革

1.激發(fā)學生的學習興趣

學生的學習態(tài)度有兩種:主動的學習和被動學習,一個樂意學習的人,肯定要比一個免為其學的人要學得更好,要讓學生由“強學”變?yōu)椤皭蹖W”,這就需要充分抓住小學生的心理特點,創(chuàng)設他們喜愛的事物與情境。例如:小學數(shù)學在所有學科中,它是最抽象化,概念化的一門學科,模糊的數(shù)字概念,枯燥的定義定律,不適合小學生的特性,如果我們能將這些數(shù)字的定義、定律等轉變成生活中生動、鮮明的形象,必然會激發(fā)學生的興趣。我覺得:教師在設計教學方法的時候,一定要考慮到這一點,讓學生在輕松的氛圍中愉快的學習。

2.教學方法要側重培養(yǎng)學生創(chuàng)新精精神

第3篇

論文關鍵詞:無功補償技術;作用;現(xiàn)狀;發(fā)展趨勢

無功功率補償裝置的主要作用是:提高負載和系統(tǒng)的功率因數(shù),減少設備的功率損耗,穩(wěn)定電壓,提高供電質量。在長距離輸電中,提高系統(tǒng)輸電穩(wěn)定性和輸電能力,平衡三相負載的有功和無功功率等。

一、無功功率補償?shù)淖饔?/p>

1、改善功率因數(shù)及相應地減少電費

根據(jù)國家水電部,物價局頒布的“功率因數(shù)調整電費辦法”規(guī)定三種功率因數(shù)標準值,相應減少電費:

(1)高壓供電的用電單位,功率因數(shù)為0.9以上。

(2)低壓供電的用電單位,功率因數(shù)為0.85以上。

(3)低壓供電的農業(yè)用戶,功率因數(shù)為0.8以上。

2、降低系統(tǒng)的能耗

功率因數(shù)的提高,能減少線路損耗及變壓器的銅耗。

設R為線路電阻,ΔP1為原線路損耗,ΔP2為功率因數(shù)提高后線路損耗,則線損減少

ΔP=ΔP1-ΔP2=3R(I12-I22)(1)

比原來損失減少的百分數(shù)為

(ΔP/ΔP1)×100%=1-(I2/I1)2.100%(2)

式中,I1=P/(3U1cosφ1),I2=P/(3U2cosφ2)補償后,由于功率因數(shù)提高,U2>U1,為分析方便,可認為U2≈U1,則

θ=[1-(cosφ1/cosφ2)2].100%(3)

當功率因數(shù)從0.8提高至0.9時,通過上式計算,可求得有功損耗降低21%左右。在輸送功率P=3UIcosφ不變情況下,cosφ提高,I相對降低,設I1為補償前變壓器的電流,I2為補償后變壓器的電流,銅耗分別為ΔP1,ΔP2;銅耗與電流的平方成正比,即

ΔP1/ΔP2=I22/I12

由于P1=P2,認為U2≈U1時,即

I2/I1=cosφ1/cosφ2

可知,功率因數(shù)從0.8提高至0.9時,銅耗相當于原來的80%。

3、減少了線路的壓降

由于線路傳送電流小了,系統(tǒng)的線路電壓損失相應減小,有利于系統(tǒng)電壓的穩(wěn)定(輕載時要防止超前電流使電壓上升過高),有利于大電機起動。

二、我國電力系統(tǒng)無功補償?shù)默F(xiàn)狀

近年來,隨著國民經(jīng)濟的跨越式發(fā)展,電力行業(yè)也得到快速發(fā)展,特別是電網(wǎng)建設,負荷的快速增長對無功的需求也大幅上升,也使電網(wǎng)中無功功率不平衡,導致無功功率大量的存在。目前,我國電力系統(tǒng)無功功率補償主要采用以下幾種方式:

1.同步調相機:同步調相機屬于早期無功補償裝置的典型代表,它雖能進行動態(tài)補償,但響應慢,運行維護復雜,多為高壓側集中補償,目前很少使用。

2.并補裝置:并聯(lián)電容器是無功補償領域中應用最廣泛的無功補償裝置,但電容補償只能補償固定的無功,盡管采用電容分組投切相比固定電容器補償方式能更有效適應負載無功的動態(tài)變化,但是電容器補償方式仍然屬于一種有級的無功調節(jié),不能實現(xiàn)無功的平滑無級的調節(jié)。

3.并聯(lián)電抗器:目前所用電抗器的容量是固定的,除吸收系統(tǒng)容性負荷外,用以抑制過電壓。

以上幾種補償方式在運行中取得一定的效果,但在實際的無功補償工作中也存在一些問題:

1.補償方式問題:目前很多電力部門對無功補償?shù)某霭l(fā)點就地補償,不向系統(tǒng)倒送無功,即只注意補償功率因素,不是立足于降低系統(tǒng)網(wǎng)的損耗。

2.諧波問題:電容器具有一定的抗諧波能力,但諧波含量過大時會對電容器的壽命產(chǎn)生影響,甚至造成電容器的過早損壞;并且由于電容器對諧波有放大作用,因而使系統(tǒng)的諧波干擾更嚴重。

3.無功倒送問題:無功倒送在電力系統(tǒng)中是不允許的,特別是在負荷低谷時,無功倒送造成電壓偏高。

4.電壓調節(jié)方式的補償設備帶來的問題:有些無功補償設備是依據(jù)電壓來確定無功投切量的,線路電壓的波動主要由無功量變化引起的,但線路的電壓水平是由系統(tǒng)情況決定的,這就可能出現(xiàn)無功過補或欠補。

三、無功功率補償技術的發(fā)展趨勢

根據(jù)上述我國無功功率補償?shù)那闆r及出現(xiàn)的問題,今后我國的無功功率補償?shù)陌l(fā)展方向是:無功功率動態(tài)自動無級調節(jié),諧波抑制。

1.基于智能控制策略的晶閘管投切電容器(TSC)補償裝置

將微處理器用于TSC,可以完成復雜的檢測和控制任務,從而使動態(tài)補償無功功率成為可能。基于智能控制策略的TSC補償裝置的核心部件是控制器,由它完成無功功率(功率因數(shù))的測量及分析,進而控制無觸點開關的投切,同時還可完成過壓、欠壓、功率因數(shù)等參數(shù)的存貯和顯示。TSC補償裝置操作無涌流,跟蹤響應快,并具有各種保護功能,值得大力推廣。

2.靜止無功發(fā)生器(SVG)

靜止無功發(fā)生器(SVG)又稱靜止同步補償器(STATCOM),是采用GTO構成的自換相變流器,通過電壓電源逆變技術提供超前和滯后的無功,進行無功補償,若控制方法得當,SVG在補償無功功率的同時還可以對諧波電流進行補償。其調節(jié)速度更快且不需要大容量的電容、電感等儲能元件,諧波含量小,同容量占地面積小,在系統(tǒng)欠壓條件下無功調節(jié)能力強,是新一代無功補償裝置的代表,有很大的發(fā)展前途。

3.電力有源濾波器

電力有源濾波器是運用瞬時濾波形成技術,對包含諧波和無功分量的非正弦波進行“矯正”。因此,電力有源濾波器有很快的響應速度,對變化的諧波和無功功率都能實施動態(tài)補償,并且其補償特性受電網(wǎng)阻抗參數(shù)影響較小。

電力有源濾波器的交流電路分為電壓型和電流型。目前實用的裝置90%以上為電壓型。從與補償對象的連接方式來看,電力有源濾波器可分為并聯(lián)型和串聯(lián)型。并聯(lián)型中有單獨使用、LC濾波器混合使用及注入電路方式,目前并聯(lián)型占實用裝置的大多數(shù)。

4.綜合潮流控制器

精品推薦
主站蜘蛛池模板: 五月亭亭激情五月 | 迅雷电影影院在线视频播放 | 羞羞视频在线看免费 | 亚洲欧洲自拍偷拍 | 久久精品国产久精国产 | 最近中文字幕最新在线视频 | 伊人中文字幕 | 日本精品一区二区三区在线视频 | 波多野结衣视频免费观看 | 午夜色网站 | 亚洲美女视频 | 羞羞视频免费观 | 亚洲成在人线久久综合 | 久久香蕉国产线看观看乱码 | 亚洲 欧洲 另类 综合 自拍 | 国产精品视频免费看 | 羞羞视频官网 | 婷婷色在线 | 五月天激激婷婷大综合丁香 | 中文字幕狠狠干 | 国产在线观看网站 | 国产精品久久久一区二区三区 | 国产黄色片在线观看 | 欧美日韩在线成人 | 日韩欧美二区 | 婷婷激情在线视频 | 中文字幕精品视频在线 | 中文字幕欧美在线 | 日韩欧美亚洲国产精品字幕久久久 | 国产亚洲高清不卡在线观看 | 自拍偷拍图区 | 亚洲精品乱码久久久久久蜜桃 | 亚洲欧洲精品成人久久曰 | 伊人国产在线视频 | 久久精品免费视频6 | 在线看你懂 | 激情丁香开心久久综合 | 色丁香影院 | 波多野结衣在线网站 | 性色欧美 | 在线午夜视频 |