本站小編為你精心準備了概率神經網絡技術論文參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
1基本原理
地震屬性和測井數據的關系,并不一定是線性的,利用概率性神經網絡的方法彌補井和地震間的非線性關系。概率性神經網絡(PNN)類似于多維屬性空間上的克里金,采用了局部化的作用函數,具有最佳逼近特性,且沒有局部極小值。每個輸出點把新點處的新屬性組與已知的培訓例子中的屬性進行比較來確定的,得到的預測值是培訓目標值的加權組合。概率神經網絡方法具有高度的容錯性,即使某個井旁道地震參數或某個網絡連接有缺陷,也可以通過聯想得到全部或大部分信息。因此,用概率神經網絡建立地震屬性和測井特征屬性之間的映射關系可靠性高。概率神經網絡方法還具有動態適應性,當地質巖性類別變化或地震參數修改時,網絡可自動適應新的變量,調整權系數,直到收斂。對于受巖性控制的儲層,概率神經網絡是描述其地震屬性參數與巖性參數關系的有效方法。概率神經網絡是由多測井和多地震屬性參數組成的網絡。首先,將由測井曲線和井旁地震道提取的特征參數按照地質巖性參數分成若干類;然后,通過非線性數學模型的神經網絡學習系統,由輸入矢量產生輸出矢量,并把這個輸出矢量與目標矢量進行平方意義下的誤差對比;再以共軛迭代梯度下降法作權的調整,以減少輸出矢量與目標矢量的差異,直到兩者沒有差異訓練才結束。對于給定的培訓數據,PNN程序假設測井值和每一輸出端的新測井值為線性組合,新數據樣點值用屬性值X表示可寫。這里σ是PNN使用的高斯權重函數的關鍵參數,來控制高斯函數的寬度。式(2)和式(3)是概率神經網絡預測的基本原理,訓練神經網絡的過程實際上就是求解最優平滑因子的過程。
1.2交互驗證增加屬性類似于多項式擬合增加高階項,增加多項式高階將會使預測誤差總是變小,但屬性的個數絕不是越多越好。隨著屬性個數的增多,對預測的結果的影響越來越小,會明顯削弱未參與神經網絡訓練的那些點的預測能力,甚至造成預測誤差反而增大,這種現象稱為過度匹配。而且參與運算的屬性過多,也會影響到運算速度,因此通過計算驗證誤差來確定最佳的屬性個數,防止過度匹配,該過程就稱為交叉驗證。通過蘊藏井誤差分析的方法,驗證出現擬合過度的情況。求取遞歸系數時,選取一口井作為驗證井,不參與運算。利用擬合出的關系,得到驗證井的誤差值。以此類推,得到每一口井的誤差值,以參與運算井的平均誤差作為參考標準,來檢驗屬性組合個數是否出現擬合過度的情況。
2應用實例分析
研究區內油氣富集區主要為巖性控制,目的層段厚度70m左右,地震剖面上大約50ms,含油砂體主要發育在wellA,wellC附近,向周圍變化較快。針對目標層T41-T43之間進行井曲線交匯和巖性統計。wellA,wellC主要是含油砂巖,wellB、D、F主要是泥質砂巖、煤層,巖性差別很大。但從速度、密度曲線交匯圖版(圖1)來看,曲線交匯統計重疊較大,很難區分含油砂巖和泥質砂巖。wellA、wellB對應層位巖性明顯不同,在地震剖面也體現同樣的反射特征。因此基于測井和地震模型為基礎的常規疊后波阻抗反演很難準確識別這套含油砂巖。而更能反映巖性特征的GR曲線,則對這套砂體較為敏感,明顯地區分出了這套含油砂巖(如圖3所示)。因此我們采用本文介紹的神經網絡技術,在常規波阻抗反演的基礎上,預測GR曲線特征體。經過分析,把GR值65~75區間巖性賦值為含油砂巖,從而把這套儲層有效的區分出來,在此基礎上進一步計算砂巖厚度(圖4)。
3結論
從應用結果來看,在研究區概率神經網絡方法有效地利用自然伽馬等地震屬性進行巖性反演預測,見到了好的效果。該方法不再限制于地下孔隙流體的彈性參數和地震數據本身,而是直接利用井的測井曲線和地震數據中提取的地震屬性。測井和地震數據間的關系它們之間的關系是通過統計的方法在井位置處得以確定,這種關系可以是線性(多變遞歸)或非線性的(神經網絡技術PNN),不受預先假定的地質模型和地震子波的影響,在一些巖性變化較快、薄互層發育的地區往往會得到意想不到的好的效果。
作者:周鵬林單位:大慶油田勘探開發研究院