前言:我們精心挑選了數篇優質分數乘法教案文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
教學目標:
1.培養分析能力和計算能力。
2.理解意義并會運用意義解答有關應用題。
3.鞏固分數乘法的計算法則,正確熟練計算。
教學重點:理解意義并會運用意義解答有關應用題。
教學難點:掌握“求一個數的幾分之幾是多少”的應用題思考方法
教學準備:投影片
教學過程:
活動一:準備練習:
說出下面分數的意義:
1.
一條路,已經修了全長的
2.
小明看了一本書的
3.
一袋大米,吃去了
小結:以上的句子都表示一個量是另一個量的幾分之幾。
活動二:新課:
出示:張家莊修一條1200米長的水渠,已經修了全長的。已經修了多少米?
1.
讀題,找出條件和問題。
2.
分析句子的意義,畫出線段圖。
師:把誰看作單位‘‘1’’?
已經修了的是誰的?
要求已經修了多少米,就是求什么?用什么法?
“1”
修了
?米
1200米
3.
列式計算;
1200×=
=
1000(米)
根據分數意義列出算式。
1200÷6×5=1000(米)
師:1200÷6求的是什么?為什么再×5?
4.
答題。
5.
同桌互相說一說解答步驟。
活動三:師生合作完成。
活動四:獨立解決問題。
活動五:學生質疑,歸納解題步驟。
活動六:鞏固練習:
1.
判斷哪一種分析是正確的,錯誤的要指出錯在哪里。
一箱貨物重噸,運走它的,運走了多少噸?
分析:1)把一箱貨物看作單位“1”,運走的貨物是;
2)把一箱貨物看作單位“1”,運走的貨物是這箱貨物的;
3)把一箱貨物看作單位“1”,把它平均分成5份,運走的占3份;
4)把看作單位“1”,運走的貨物是它的,求運走了多少噸,也就是求的是多少,用乘法。
2.
選擇正確的算式:
從甲地到已地小聰步行用小時,小明騎車比小聰快,小明比
小聰早幾小時到達已地?
1)+
2)-
3)×
4)×
+
5)-
×
布置作業:書P9/
7(2)
P10/
1,2,5,6
板書設計:
分數乘法應用題
張家莊修一條1200米長的水渠,已經修了全長的。已經修了多少米?
“1”
修了
1200×=
1200×=
1000(米)
1200÷6×5=1000(米)
?米
答:已經修了1000米。
1200米
見幻燈片《分數乘法應用題》
反思:1、稍復雜的求一個數的幾分之幾是多少的應用題是在簡單的求一個數的幾分之幾是多少的應用題的基礎上進行教學的,這節課緊緊抓住新舊知識的聯系,采用了變簡單題的問題與已知條件相對應為不對應,變一步計算為兩步計算。
教學目的
1、使學生正確掌握分式的乘除法的法則。
2、能熟練地運用分式的乘除法的法則進行計算。
教學分析
重點:分式的乘除法的法則是本節的教學重點。
難點:分子或分母為多項式的分式的乘除法是本節教學的難點。
教學過程
一、復習
1、復習提問:
(1)什么叫做分式的約分?約分的根據是什么?(可叫一位學生回答.)
(2)用投影儀(或小黑板)出示以下題目:
下列各式是否正確?為什么?。
先讓學生觀察思考,最后老師作結論.
2、用類比的方法總結出分式的乘除法的法則。
由分數的基本性質類比地得到分式的基本性質,由分數的約分類比地得到分式的約分.由分數乘除法的法則同樣可類比地得到分式的乘除法的法則.現在我們來學習分式的乘除法.(板書課題)
讓學生回憶并回答什么是“分數的乘除法的法則”;用投影儀(或小黑板)出示分數的乘除法的法則,然后啟發學生,用類比的方法敘述出分式的乘除法的法則.。
二、新授
用投影儀或小黑板出示分式的乘除法法則:
分式乘以分式,用分子的積做積的分子,分母的積做積的分母;
分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘.
用式子表示即是:
例1計算
分析(1)題并引導學生解答:
①(1)題是幾個分式進行什么運算?
②每個分式的分子和分母都是什么代數式?
③運用分式乘除法法則得到的積的分子、分母各是什么?
④積的符號是什么?
⑤怎樣應用分式的約分法則使積化成最簡分式或單項式?
隨手板書解題過程:
分析(2)題并引導學生自解:
①(2)題兩個分式進行什么運算?
②每個分式的分子、分母各是什么代數式?
③怎樣應用分式的除法法則把分式的除法運算變成分式的乘法運算?
以下可由學生寫出運算結果:
(用投影儀或小黑板出示以下小結內容)
小結:分子和分母都是單項式的分式乘除法的解題步驟是:
①含有分式除法運算時,先用分式除法法則把分式除法運算變成分式乘法運算;
②再用分式乘法法則得出積的分式;
③用分式符號法則確定積的符號;
④用分式約分法則使積化成最簡分式或整式(一般為單項式).
三、練習
課堂練習1:
計算:
分析、引導學生
①本題是幾個分式在進行什么運算?
②每個分式的分子和分母都是什么代數式?
③在分式的分子、分母中的多項式是否可以分解因式,怎樣分解?(a2-4)=(a+2)(a-2),a2-4a+3=(a-1)(a-3),a2+3a+2=(a+1)(a+2).
④怎樣應用分式乘法法則得到積的分式?
⑤怎樣應用分式約分法則使積化成最簡分式或整式(一般為多項式)?
隨手板書解題過程.
課堂練習2:
計算:
小結:分子或分母是多項式的分式乘除法的解題步驟是:
①將原分式中含同一字母的各多項式按降冪(或升冪)排列;在乘除過程中遇到整式則視其為分母為1,分子為這個整式的分式;
②把各分式中分子或分母里的多項式分解因式;
③應用分式乘除法法則進行運算得到積的分式;
④應用分式約分法則使積化成最簡分式或整式.
先分析:本題是分子或分母為多項式的分式乘除法混合運算,運算過程從左至右依次進行;因此,分式乘除法法則也適用于兩個以上的分式相乘除.然后讓學生自己做,教師巡視,并找出得出正、反兩個結果的學生上臺板書,讓大家判斷正誤.
四、小結
(1)讓兩個學生分別用語言敘述和式子表示分式乘除法法則.
(2)課堂驗收題:在余下的時間內讓學生獨立完成以下題目,下課時全收上來,批閱打分,以便檢查課堂效果.(題目可用小黑板出示).
計算:
五、作業
1.計算:
2.計算:
教學目的
1、使學生正確掌握分式的乘除法的法則。
2、能熟練地運用分式的乘除法的法則進行計算。
教學分析
重點:分式的乘除法的法則是本節的教學重點。
難點:分子或分母為多項式的分式的乘除法是本節教學的難點。
教學過程
一、復習
1、復習提問:
(1)什么叫做分式的約分?約分的根據是什么?(可叫一位學生回答.)
(2)用投影儀(或小黑板)出示以下題目:
下列各式是否正確?為什么?。
先讓學生觀察思考,最后老師作結論.
2、用類比的方法總結出分式的乘除法的法則。
由分數的基本性質類比地得到分式的基本性質,由分數的約分類比地得到分式的約分.由分數乘除法的法則同樣可類比地得到分式的乘除法的法則.現在我們來學習分式的乘除法.(板書課題)
讓學生回憶并回答什么是“分數的乘除法的法則”;用投影儀(或小黑板)出示分數的乘除法的法則,然后啟發學生,用類比的方法敘述出分式的乘除法的法則.。
二、新授
用投影儀或小黑板出示分式的乘除法法則:
分式乘以分式,用分子的積做積的分子,分母的積做積的分母;
分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘.
用式子表示即是:
例1計算
分析(1)題并引導學生解答:
①(1)題是幾個分式進行什么運算?
②每個分式的分子和分母都是什么代數式?
③運用分式乘除法法則得到的積的分子、分母各是什么?
④積的符號是什么?
⑤怎樣應用分式的約分法則使積化成最簡分式或單項式?
隨手板書解題過程:
分析(2)題并引導學生自解:
①(2)題兩個分式進行什么運算?
②每個分式的分子、分母各是什么代數式?
③怎樣應用分式的除法法則把分式的除法運算變成分式的乘法運算?
以下可由學生寫出運算結果:
(用投影儀或小黑板出示以下小結內容)
小結:分子和分母都是單項式的分式乘除法的解題步驟是:
①含有分式除法運算時,先用分式除法法則把分式除法運算變成分式乘法運算;
②再用分式乘法法則得出積的分式;
③用分式符號法則確定積的符號;
④用分式約分法則使積化成最簡分式或整式(一般為單項式).
三、練習
課堂練習1:
計算:
分析、引導學生
①本題是幾個分式在進行什么運算?
②每個分式的分子和分母都是什么代數式?
③在分式的分子、分母中的多項式是否可以分解因式,怎樣分解?(a2-4)=(a+2)(a-2),a2-4a+3=(a-1)(a-3),a2+3a+2=(a+1)(a+2).
④怎樣應用分式乘法法則得到積的分式?
⑤怎樣應用分式約分法則使積化成最簡分式或整式(一般為多項式)?
隨手板書解題過程.
課堂練習2:
計算:
小結:分子或分母是多項式的分式乘除法的解題步驟是:
①將原分式中含同一字母的各多項式按降冪(或升冪)排列;在乘除過程中遇到整式則視其為分母為1,分子為這個整式的分式;
②把各分式中分子或分母里的多項式分解因式;
③應用分式乘除法法則進行運算得到積的分式;
④應用分式約分法則使積化成最簡分式或整式.
先分析:本題是分子或分母為多項式的分式乘除法混合運算,運算過程從左至右依次進行;因此,分式乘除法法則也適用于兩個以上的分式相乘除.然后讓學生自己做,教師巡視,并找出得出正、反兩個結果的學生上臺板書,讓大家判斷正誤.
四、小結
(1)讓兩個學生分別用語言敘述和式子表示分式乘除法法則.
(2)課堂驗收題:在余下的時間內讓學生獨立完成以下題目,下課時全收上來,批閱打分,以便檢查課堂效果.(題目可用小黑板出示).
計算:
五、作業
1.計算:
2.計算: