前言:我們精心挑選了數篇優質河長制履職報告文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
我科收治3例QT間期延長病人,均出現惡性心律失常,現報告如下。
1病例資料
病例1:女性,74歲,以“腹瀉3天,發作性抽搐半天”為主訴入院,3天前因腹瀉在當地醫院治療(未用延長QT間期藥物),半天前出現陣發性抽搐,伴意識喪失、大小便失禁,數秒鐘可緩解,反復發作,故轉我院。既往有“冠心病”史5年,有發作性胸痛病史,無暈厥史,無既往心電圖資料,直系親屬無類似病人,無猝死病人。入院時心電圖顯示:竇性心律,胸前導聯T波深倒置,QT間期顯著延長(附后圖1)。急查血電解質鉀、鈉、氯、鈣在正常值范圍,心肌酶正常。入院后行吸氧,心電監護,對癥治療。入院后約半小時再次出現抽搐,意識喪失,心電監護顯示室性心動過速,給以利多卡因靜注緩解,后靜滴門冬氨酸鉀鎂針,營養心肌,口服美托洛爾片等治療,此后仍反復發作阿斯綜合征,心電監護有時顯示為尖端扭轉型室速,后轉上級醫院,在上級醫院未發作惡性心律失常,藥物治療3天出院。
病例2:女性,77歲,以“反復胸悶、心悸半月,抽搐2小時”為主訴入院,半月前因腹瀉后出現胸悶、心悸,在當地按冠心病治療(未應用延長QT間期藥物),療效差,于2小時前突然意識喪失,四肢抽搐,面色青紫,呼吸困難,約15分鐘緩解,急來診。既往“冠心病心肌缺血”史10余年,無暈厥史,入院時心電圖顯示:心房纖顫,不完全性右束支傳導阻滯,QT間期大于600ms(附后圖2)。急查血電解質、心肌酶正常。給以營養心肌,中成藥活血化瘀等治療。5小時后再次出現意識喪失,抽搐,心電圖示:心室纖顫,行心肺復蘇,復蘇藥物應用,心電圖轉為竇性心律。于第二天反復發作心室顫動、心室撲動(附后圖3),轉上級醫院。
病例3:女性72歲,因頭暈跌倒致額部裂傷,在外科住院治療,既往身體健康。入院時心電圖示:竇性心動過緩,心率每分鐘45次左右,QT間期顯著延長,T波直立、增寬(因時間較久,無當時心電圖資料)。病人訴時有頭暈,未引起重視,于入院第二天正輸液時突然意識喪失,四肢抽搐,心音消失,大動脈搏動消失,立即行心肺復蘇,查心電圖示:尖端扭轉型室速,后轉為心室纖顫,持續心肺復蘇,復蘇藥物應用,一小時左右,心電圖顯示為心房纖顫,隨后病人出現自主呼吸,四肢活動,血壓平穩,轉上級醫院。隨訪病人在上級醫院診斷為急性心肌梗死,轉院數小時后再次出現尖端扭轉型室速,經治療痊愈出院。
2討論
3例病人心電圖均有QT間期顯著延長,均有惡性心律失常發作,可診斷為長QT綜合征。長QT綜合征可以是先天性,也可以是獲得性的,先天性長QT間期在兒童或青春期最常見,表現為暈厥前兆或癥狀明顯的暈厥反復發作。上述3例病人既往均無暈厥發作,考慮為獲得性長QT綜合征。獲得性長QT綜合征的常見誘因為:
2.1心源性心律失常(完全性傳導阻滯、嚴重心動過緩性心律失常)、冠心病、心肌炎、低體溫。
2.2代謝性酗酒、可卡因或有機磷化合物中毒、心肌缺血、神經性厭食癥、電解質紊亂(低鉀血癥、低鎂血癥、低鈣血癥)、甲狀腺功能低下等。
2.3神經源性腦血管意外、腦炎、創傷性腦損傷、自主神經系統疾病、人類免疫缺陷疾病等。
2.4藥源性奎尼丁、胺碘酮、紅霉素、阿司咪唑、酮康唑、左氧氟沙星等。基層醫務人員對長QT綜合征不熟悉,不易引起重視,治療不規范,尤其是非心血管專業人員,處理不得當,可能導致嚴重后果。
3體會
3.1心電圖顯示長QT間期病人應查找原因,完善相關檢查,去除誘因,避免惡性心律失常發生。
3.2基層醫務人員加強業務學習,要掌握惡性心律失常的治療原則。
關鍵詞:高爾夫場;果嶺;根層基質;導水率;土壤淋洗
中圖分類號:G 849.3;S 155 文獻標識碼:A 文章編號:1009-5500(2013)05-0072-07
收稿日期:2013-08-17; 修回日期:2013-10-09
作者簡介:張華(1972-),男,廣西柳州人。
E-mail:
Hydraulic conductivity of golf course putting green
root zones affected by sodium adsorption
ratio of leaching water
ZHANG Hua WANG Yi-chun LI De-ying
(1.School of Applied Chemistry and Biological Technology,Shenzhen Polytechnic,Shenzhen
518055,China;2.Department of Plant Sciences,North Dakota
State University,Fargo,ND 58108,USA)
Abstract:Soil salinization is a major problem threatening turfgrass management.Alternative water sources such as recycled water (RW) usually have elevated salt content.With high exchangeable sodium in soil,rain or irrigation with fresh water can cause soil dispersion,and thus reduce water infiltration and permeability.The objective of this study was to determine the effect of salt composition in irrigation water on saturated water conductivity (Ksat) of putting green root zone materials and constructions.Three root zone materials,clay (Fargo,North Dakota,USA),clay loam (Garick Corp.,Cleveland,OH),and sand/peat mixture (Dakota Peat,North Dakota,USA) (90/10 v/v) were tested alone,as well as tested in different root zone construction,i.e.soil pushup green (40 cm deep),sand/peat mixtures in USGA-putting green style (30 cm of root zone over 10 cm gravel) and California putting green style (40 cm deep).Saturated water conductivity was determined after the root zone materials and construction were leached with water of five levels of SARw (0,2.5,5.0,15.0,and ∞).All except the SARw 0 had an ECw of 11.0 dS/m.The results showed severe soil dispersion may happen when SARw of leaching water is greater 5 for clay and clay loam.A laboratory test may predict the severity of dispersion but further study is needed to quantify the effect of soil organic matter (OM) and clay mineralogy.Generally,sand/peat mixtures used in root zones of either California or USGA putting green style is not vulnerable to dispersion by salt in irrigation water.
Key words: golf course;putting green;root zone;saturated water conductivity;salinity;leaching.
INTRODUCTION
Soil salinization is a major problem threatening crop production in arid and semi arid pared to agriculture turfgrass management is facing a greater challenge because turfgrass irrigation is often viewed as a low priority when water shortage happens.Recycled water (RW) is a practical alternative for turfgrass irrigation as it is the only water source with increasing availability (Harivandi,2007;Qian and Harivandi,2008).The National Golf Course Owners Association reported that 12% of the golf courses have adopted RW solely or partially for irrigation (NGCOA,2005).Recycled water usually contains significant amounts of salt,and repeated use for turfgrass irrigation may result in soil salinization (Mancino and Pepper,1992;Thomas et al.,2006).Excessive salts adversely impact turfgrass growth by inducing osmotic stress and toxicity (Munns and Tester,2008).Leaching is an important means of removing excess salts out of the root zones.Once exchangeable sodium in soil is too high,rain or irrigation with fresh water can cause soil dispersion,surface crusting and compaction,and thus reduce water infiltration and permeability (Carrow and Duncan,1998).The efficiency of leaching practice is affected by many factors,such as water quality,soil types,irrigation,and climate.For non-sodic saline soils,leaching can be achieved using water with electrical conductivity (EC) below the targeted soil EC.Nevertheless,larger leaching fractions (LF) are required as EC of leaching water increases.Once soil becomes sodic,leaching will not be effective because soil hydraulic conductivity decreases with decreasing electrolyte concentration and increasing sodium adsorption ratio (SARw) of the leaching water,especially for soils high in 2∶1 layer-silicates (McNeal and Coleman,1966;McNeal et al.,1966).
The widely used guidelines of SAR and EC thresholds for water infiltration in salt management were established by Ayers and Westcot (1985) based on the research by Oster and Schroer (1979) and Rhoades (1977).A more recent guideline was developed to include soil texture information (Steppuhn and Curtin,1993).An evaluation of those guidelines using different soils and leaching water was conducted by Buckland et al.(2002) and the results indicated that soil texture is important in the selection of leaching water.
Currently,LF in turfgrass management is mostly based on the measurement of water EC and soil EC (Carrow and Duncan,1998;Rhoades and Loveday,1990).However,different leaching strategies are recommended for sand and soil root zones.On sand-based systems,large amounts of water can be applied at one time,while for soils with lower infiltration rates,a leaching fraction slightly above the evapotranspiration (ET) can be applied (Soldat,2007).Water permeability (infiltration and percolation) through different turfgrass root zones such as the United States Golf Association (USGA) style and California style is usually different (Aragao,et al.,1997;McCoy and McCoy,2006).A small amount of silt and clay fraction is allowed in the USGA specifications (USGA Green Section Staff,1993),whether such a small amount has any influence on leaching practice in salinity management of sand-based root zones is not well understood.
The objective of this study was to determine the effect of salt composition in irrigation water on saturated water conductivity (Ksat) of four putting green root zone materials.The result will provide better understanding of interactions between root zone media and water quality and quantity in leaching process so that turfgrass managers can make decisions accordingly.
MATERIAL AND METHODS
Three root zone materials,clay (Fargo series,fine,smectitic,frigid Typic Epiaquerts),clay loam (topsoil,Garick Corp.,Cleveland,OH),and sand/peat mixture (Reed sedge peat,Dakota Peat,North Dakota,USA) (90/10,v/v) were packed into brass cylinders (6 cm diam. 5.4 cm i.d.) with two layers of cheese cloth attached at the paction was kept consistent by 5 drops of a 1.36 kg hammer from a 305 mm height (USGA Green Section Staff,1993).Each soil type had four replicates.The compacted soil cores were treated in a laboratory for 10 saturation/drying cycles with salt solutions at five levels of SARw.Saturation was achieved by introducing the salt solutions from the bottom of the samples and drying process was conducted at room temperatures.The five levels of SARw were 0,2.5,5.0,15.0,and ∞,all except the SARw 0 had an EC of 11.0 dS/m.The EC for SARw 0 was 0.2 dS m-1 from distilled water.A target SARw level was achieved by mixing appropriate amounts of NaCl,CaCl2?2H2O,and MgCl2?6H2O,respectively,with Ca2+ and Mg2+ in 1∶1 ratio where they were needed,following the equation of SARw = [Na+]/(Ca2++Mg2+)/2,with concentration expressed in meq/L.After the wet/dry cycles,Ksat of those samples were measured using distilled water by a constant head method following Klute and Dirksen (1986).Organic matter content was tested by the loss on ignition method (Nelson and Sommers,1996).Soil EC was determined following the method of Whitney (1998) with miner modifications.Briefly,to a 10 g of soil sample deionized water was added in 1∶5 soil to water gravimetrical ratio and agitated on a shaker (Model 6010;Eberbach Corp.,Ann Arbor,MI) at 180 osc/min for 10 min.Then,following a 15-min equilibration,the EC from the supernatant was measured with an EC meter (model 1054;VWR Scientific,Phoenix,AZ).Soil pH was determined with a pH meter (model 420;Thermo Fisher Scientific Inc.,Waltham,MA) following the method of Watson and Brown (1998) using a 1∶1 soil to water gravimetric ratio.Cation exchange capacity was measured using ammonium acetate extraction method at pH = 7 (Hendershot et al.,1993).The chemical properties of soil materials used in the study are shown in Table 1.
The three root zone materials also were used to fill in clear polyethylene tubes (5.4 cm diam.,40 cm height) to simulate root zones.Clay and clay loam were packed to 40 cm depth.Sand/peat mixtures were packed in USGA putting green style (30 cm of root zone over 10 cm gravel) and California putting green style,respectively.Therefore,four different root zones were created.Each tube was supported within a 7.5 cm diameter opaque polyvinyl chloride (PVC) pipe capped on the bottom.Holes were drilled on PVC cap and plastic tubing to allow for drainage.Sea-
Table 1 Properties of three soil materials used in the construction of putting green root zones
prior to the leaching experiment with different levels of sodium adsorption ratio (SARw)
1:Electrical conductivity measured in a 1:5 soil to water gravimetric ratio.2:Cation exchange capacity.3:Organic matter. side II' creeping bentgrass was seeded at a rate of 49 kg/ha in the four root zone mixtures.
Irrigation was applied with an automated mist system to maintain moisture during germination and then hand watered every other day four weeks after germination.Milorganite (5.0 N-0.9 P-0.0 K) was applied at 24.5 kg N/ha at the time of seeding and 13.0 N-0.0 P-22.0 K was applied every two weeks at 49 kg N/ha in the following two months.The grass was hand cut at 2 cm height twice a week following the germination.Average day/night air temperature was 28/18 ℃ and supplemental light with metal halite lamps were provided to have a minimum PAR of 375 mol/m?s and photo period of 12 h/d.
The experiment was set up as a split-plot with root zone mixtures being the whole-plot factor arranged in a randomized complete block design with three replicates.The sub-plots were assigned to a combination of five SARw levels as used above.A micronutrient fertilizer (0.84% B,1.80% Cu,15.25 % Fe,5.55% Mn,0.09% Mo,5.25% Zn,and 8.45% S) (EnP Inc.,Mendota,IL) was applied at 91.5 kg product per ha when the leaching treatments were initiated to avoid potential micronutrient deficiency.
Six months after the initiation of the study,all soil profiles were removed from the plastic tubes and air dried prior to crushing into particles and aggregates smaller than 3 mm.The soil samples from the top 0 to 10 cm depth were repacked into brass cylinders (5.4 cm diam.,6 cm height) and their Ksat values were determined using same methods described above.
Data were subjected to analysis of variance (ANOVA) using the general linear model procedure with the Ksat data transformed with the natural logarithm prior to the ANOVA analysis (SAS Institute Inc,2008).Means of soil Ksat were compared using the Duncan's multiple range tests at 0.05 probability level.
RESULTS AND DISCUSSION
There was significant soil type,SARw level,and interaction effects on Ksat after the saturation/dry cycles (Table 2).Saturated water conductivity of clay and clay loam was affected by SARw level in the salt solutions,whereas sand/peat mixture was not.For clay soil,significant reduction of Ksat from the control occurred as SARw became higher than 2.5,with the lowest Ksat occurred in the treatment that had no CaCl2
Table 2 Analysis of variance for the saturated water conductivity of the root zone materials (clay,clay loam,
sand/peat) after 10 cycles of saturation/drying cycles using salt solutions with
SARw at 0,2.5,5.0,15.0,and ∞. added (SARw = ∞) (Fig.1).For the clay loam soil,significant reduction of Ksat from the control occurred only in salt solution without CaCl2 addition (SARw = ∞).Therefore,the clay soil was more prone to dispersion than clay loam as a result of exposure to salt solutions with high SARw values.Sand/peat mixtures were most labile in response to different EC and SARw in irrigation water followed by leaching with distilled water.
Fig.1 Saturated water conductivity of root zone materials affected by 10 cycles of saturation/drying using salt solutions with sodium adsorption ratio (SARw) at 0,2.5,5.0,15.0,and ∞.Bars with a same letter are not significantly different at the 0.05 probability level.
Results from the greenhouse study were similar to that from the laboratory,with significant root zone material/construction effects,SARw effects and interactions (Table 3).The Ksat of sand/peat mixtures was not affected by different levels of SARw in leaching water when used in California and USGA root zones (Fig.2).There were no differences between California and USGA root zones despite the higher water holding potential in the USGA style root zone (Li et al.,2005).All salt solutions resulted in reduction of Ksat from the control in clay soil,with the most reduction occurred in the treatment that had no addition of CaCl2 (SARw = ∞) (Fig.2).A 25% reduction of Ksat occurred when SARw was greater than 2.5 with no difference for SARw levels of 2.5 to 15.For clay loam,significant reduction of Ksat showed as SARw was higher than 2.5,with the lowest Ksat occurred in the treatment that had no addition of CaCl2 (SARw = ∞) (Fig.2).A 25% reduction of Ksat occurred when SARw was greater than 5 but there was Ksat difference between SARw levels of 5 and 15.
Table 3 Analysis of variance of saturated water conductivity affected by four root zone constructions and materials (clay
pushup,clay loam pushup,sand/peat California,sand/peat USGA) after 6 months of irrigation using sodium
adsorption ratio (SARw) levels at 0,2.5,5.0,15.0,and ∞
Results from this study are in agreement with McNeal and Coleman (1966) in that hydraulic conductivity decreases with decreasing electrical conductivity and increasing SARw of the leaching solution and the responses vary with different clay mineralogy,with montmorillonite being most sensitive.This study also supports the maximum SARw of 5 as the guideline for leaching fine textured soil as reported by Steppuhn and Curtin (1993).In addition to the clay content,soil samples used in this study had a great difference in OM content (Table 1).Therefore,OM content may also influence the levels of soil dispersion caused by high SARw in the leaching water.
In conclusion,a severe soil dispersion hazard may happen when irrigating with salt water with SARw value greater than 5 as shown in the reduction of Ksat.A laboratory test could be used to predict the severity of dispersion but further study is needed to quantify the effect of soil OM and clay mineralogy.Generally,sand/peat mixtures used in either California or USGA style root zones are not vulnerable to dispersion from the salt in irrigation water,although the threshold of clay or OM content in sand-based root zones requires further investigation for saline water irrigation.
Fig.2 Saturated water conductivity of four root zone constructions and materials (clay pushup,clay loam pushup,sand/peat California,sand/peat USGA) affected by 6 months of irrigation with different sodium adsorption ratio (SARw) levels in the water.Bars with a same letter are not significantly different at the 0.05 probability level.
REFERENCES
Aragao,S.,H.J.Geering,M.G.Wallis,C.J.Pearson,and P.M.Martin.1997.Hydrological properties of three greens with different construction profiles.Int.Turfgrass Soc.Res.J.8:1136-1149.
Ayers,R.S.and D.W.Westcot.1985.Water quality for agriculture.FAO Irrig.Drain.Paper 29,Revision 1.FAO,Rome,Italy.174 pp.
Carrow,R.N.,and R.R.Duncan.1998.Salt-affected turfgrass sites:Assessment and management.Ann Arbor Press.Chelsea,MI.
Harivandi,A.2007.Using recycled water on golf courses:As more restrictions are placed on water use,it becomes increasingly important for superintendents to learn the ins and outs of irrigating with recycled water.Golf Course Manage.75:98-108.
Hendershot,W.H.,H.Lalande,and M.Duquette.1993.Ion exchange and exchangeable cations.P.167-176.In M.R.Carter (ed.) Soil sampling and methods of analysis.CRC Press,Boca Raton,FL.
Klute,A.and C.Dirksen.1986.Hydraulic conductivity and diffusivity:Laboratory methods.687-734.in:A.Klute (ed) Methods of soil analysis.Part 1.Agronomy 9.ASA and ASSSA.Madison,WI.
Li,D.,D.D.Minner,N.E.Christians,and S.Logsdon.2005.Evaluating the Impact of Variable Root Zone Depth on the Hydraulic Properties of Sand-Based Turf Systems.Inter.Turfgrass Soc.Res.J.10:1100-1107.
Mancino,C.F.,and I.L.Pepper.1992.Irrigation of turfgrass with secondary sewage effluent:Soil quality.Agron.J.84:650 654.
McCoy,E.,and K.McCoy.2006.Dynamics of water flow in putting greens via computer simulation.USGA Turfgras and Enviro.Res.Online.5(17):1-15.
McNeal,B.L.and N.T.Coleman.1966.Effect of solution composition on soil hydraulic conductivity.Soil Sci.Soc.Amer.Proc.30:308-312.
McNeal,B.L.,W.A.Norvell,and N.T.Coleman.1966.Effect of solution composition on the swelling of extracted soil clays.Soil Sci.Soc.Mer.Proc.30-313-317.
Munns,R.,and M.Tester.2008.Mechanisms of salinity tolerance.Annu.Rev.Plant Biol.59:651-681.
Nelson D.W.and L.E.Sommers.1996.Total carbon,organic carbon,and organic matter.961-1000.in:D.L.Sparks (ed) Methods of soil analysis.Part 3-Chemical methids.SSSA book series 5.ASA and ASSSA.Madison,WI.
NGCOA (National Golf Course Owners Association).2005.Golf's environmental impact fact sheet.Available at http:///pdf/advocacy/Environmental%20Impact%20-Fact%20Sheet.pdf.(verified 27 Dec.2010).NGCOA,Charleston,SC.
Oster,J.D.and F.W.Schroer.1979.Infiltration as influenced by irrigation water quality.Soil Sci.Soc.Amer.J.43:444-447.
Qian,Y.and A.Harivandi.2008.Salinity issues associated with recycled wastewater irrigation of turfgrass landscapes,p.419 429.In Pessarakli,M.(ed.).Handbook of turfgrass management and physiology.CRC Press,Boca Raton,FL.
Rhoades J.D.1977.Potential for using saline agricultural drainage waters for irrigation.Proc.Water Management for Irrigation and Drainage.ASCE,Reno,Nevada.20 22 July 1977.pp.85116.
Rhoades,J.D.and J.Loveday.1990.Salinity in irrigated agriculture.In Stewart,B.A.and D.R.Nielson (Eds.).Irrigation of Agricultural Crops.Agronomy Monograph No.30.Amer.Soc.Of Agron.,Madison,WI.
SAS Institute Inc.2008.SAS 9.1.3.SAS user's guide.Copyright 2002-2003.Cary,NC.
Soldat,D.2007.Managing salts on sand putting greens in Wisconsin.The Grass Roots.36(4):7-9,11,13.
Steppuhn,H.and Curtin,D.1993.Sodicity hazard of sodium and bicarbonate containing irrigation waters on the long-term productivity of irrigated soils.Agriculture and Agri-Food Canada,Swift Current,SK.174 pp.
Thomas,J.C.,R.H.White,J.T.Vorheis,H.G.Harris,and K.Diehl.2006.Environmental impact of irrigation turf with type I recycled water.Agron.J.98:951 961.
分析得出:在剖面上,土壤飽和導水率由大到小的排列順序為 0~10cm、20~30cm、10~20cm 和 30~40cm;土壤飽和導水率與植被蓋度相關性顯著,植被蓋度越高土壤入滲能力越強,土 壤飽和導水率越大;溫度是影響高寒草甸土壤水分分布的重要因素,隨著地溫的升高,土壤 的飽和導水率也相應增大。植被和地溫是影響高寒草甸的土壤入滲能力的重要因素。
關鍵詞:入滲,飽和導水率,植被蓋度,
Abstract
Infiltration is an important process in hydrologic cycle, in the source region of Yangtze River, infiltration of soil moisture has impact in runoff and plateau ecology. Basing on the measured data in
infiltration, ground temperature and vegetation during three years, the results are as follows: in profile,
the sequence of saturation conductivity coefficient was soil layers 0~10cm, 20~30cm, 10~20cm and
30~40cm below the surface from max. to min.; There is positive and significant correlation between
the saturation conductivity coefficient and vegetation cover; when the ground temperature increased, the saturation conductivity coefficient too. So, the vegetation cover and ground temperature have important influence to the soil infiltration in alpine meadow.
Keywords:Infiltration; saturation conductivity coefficient; vegetation cover; the source region of Yangtze River
長江源區土壤入滲是指降雨落到地面上的雨水從土壤表面滲入土壤形成土壤水的過程,它是水在土體內運行的初級階段,也是降水、地表水、土壤水和地下水相互轉化過程中的一個重要環 節[1]。
土壤入滲是分析模擬土壤侵蝕過程的重要參數,同時也是實施水土保持規劃時需要認真 考慮的因素。總結各因子下的土壤入滲的變化規律,將有助于研究地表產流的機理及其規律[2],揭示水量轉化關系及“五水”(大氣降水、地表水、地下水、土壤水、植物水)轉化機理, 以從更深層次上弄清水量轉化規律。這對土壤侵蝕的預測和防治、洪水的預報、各種水土保 持措施的最優化配置及其效益評價都具有極為重要的指導意義,同時為增加土壤蓄水、土壤 水分最優化調控、合理有效地利用土壤“水庫”的調節功能,提高土壤水分生產力等方面具有 重要的理論和現實意義。
土壤的入滲性能受制于許多內在因素的影響,諸如:土壤剖面特征、土壤含水量、導水 率及土壤表面特征等[3~6]。特別是土壤導水率又取決于土壤孔隙的幾何特征(總孔隙度、孔隙 大小分布及彎曲度)、流體密度和黏滯度、溫度等因子[2,7]。不同林地、草地、地形地貌、土 地利用方式等外界條件對土壤內在理化性質均有顯著的影響,從而形成不同外界條件下土壤 入滲的特異規律。本文用土壤飽和入滲儀(2800K1)對不同植被蓋度、不同地溫、不同土 層深度的土壤進行觀測,得出飽和導水率,并進行統計分析,弄清長江源區高寒草甸植被覆 蓋與地溫變化對土壤飽和導水率的影響,找出高寒草甸生態環境下的土壤入滲規律。
1. 研究區概況
長江源區位于青藏公路以西的昆侖山和唐古拉山之間,平均海拔高度 4500m,生態環境 極為復雜、生物多樣性最集中的地區,該區域獨特的地理位置及其生態環境特點、特有的水 源涵養生態功能、豐富的自然資源與生物多樣性,以及對整個流域環境的深刻影響等,使該 區域近年來成為全社會所廣泛關注的熱點地區之一。
本文所選擇的研究區位于長江源區多年凍土和高寒草甸比較典型的小流域北麓河一級 支流——左冒西孔曲流域,地理位置92?49′48?~93°0′40?E,34°39′36?~34°46′50?N,流域面 積為134km2。該區域深居內陸,屬高原寒帶半濕潤~半干旱區氣候。年均氣溫為-5.2 ℃,多
年平均降雨量290.9mm,多年平均蒸發量1316.9mm,相對濕度平均為57%,海拔4680~5360
m(王根緒等,1998)。 該區域植被類型主要有高寒草甸和高寒草原兩大類。草甸植物以莎草科嵩草屬占優勢,
如西藏嵩草和嵩草等;草原植物以禾本科和菊科為主,如紫花針茅、羽柱針茅等。該區成土 母質多為第四紀沉積物及變質巖、中入巖等巖石風化的坡、殘積物,砂礫石、碎石土基 亞粘土夾碎石(王根緒等,2001)。土壤發育很慢,處于原始的粗骨土形態。土壤類型基本 分為三大類:高山草甸土、高山草原土和高山荒漠土。凍土和地下冰比較發育,河谷中存在 著潛水,常形成冰錐、凍脹丘;斜坡地帶常有冰錐、冰丘、凍融泥流及凍融滑塌發育;連續 多年凍土地區的地溫為-3.0~-1.0 ℃,天然凍土上限為0.8~2.5m。
2.研究方法
2.1 實驗設置
在研究區小流域內,根據流域兩側的地形、植被類型與植被覆蓋狀況布置觀測試驗點, 在每個觀測實驗點上進行以下試驗與觀測內容:地溫、植被類型與蓋度、土壤含水量、土壤 根系層深度、土壤容重、土壤飽和導水率及土壤取樣等。按植被蓋度分為 10%、40%、70%、
90%四個實驗點,每個實驗點重復實驗四次。
2.2 土壤飽和導水率的測定
土壤入滲采用 2800K1 土壤飽和入滲儀。在流域內選擇 10%、40%、70%、90%四個不 同蓋度的植被進行觀測,在每個蓋度下重復 4 次,求其平均值。數據讀取以 2 分鐘作為時間 間隔并記錄各個數據,直到土壤入滲達到飽和穩定入滲,停止觀測。求出液面下降速率,單 位為 cm/s。
設管中液面下降速率為 R(cm/s),測得 5cm 處入滲水頭為 R1,10cm 處為 R2,由此, 標準飽和導水率(Kfs)由下列公式計算:
當使用外部儲水管的時候使用以下公式:
Kfs=0.0041XR2-0.0054XR1; 當使用內部儲水管的時候使用以下公式: Kfs=0.0041YR2-0.0054YR1;
式中,X,Y 分別為外管和內管的面積值,分別為 X=35.22cm2,Y=2.15cm2。
2.3 主要環境因子的測定
(1) 利用地溫計對活動層5, 15, 25和35 cm的土壤溫度進行觀測, 每1 h 進行1 次; (2) 采用便攜式TDR 對活動層5, 15, 25和35 cm 的土壤水分進行觀測; (3)土壤的顆粒度通過取 樣用激光粒度儀進行測定;(4)土壤容重采用環刀法進行測定。
3. 結果與討論
3.1 土壤垂直剖面上的飽和導水率變化規律
土壤水分入滲過程受多種因素影響,在土壤水分入滲過程中,土壤剖面某一深度的土層 吸水過程或脫水過程往往相互交替或者同時并存,因此存在著滯后作用對入滲的影響[8]。當 有效降水進入土壤后,土壤水開始向下入滲并進行分配。在較大的時間尺度里,土壤水分的
動態變化實際上是一時間序列的變化,分析土壤的入滲特性,可以通過分析不同層次土壤飽和導水率來進行研究。
在青藏高原,土壤水分入滲對是高原生態環境變化影響顯著。由于生態環境變化引起土
壤水分的運移、儲存等過程嚴重變化。在垂直剖面上,土壤飽和導水率隨土壤深度趨勢有如 下特征(見圖 1):
(1)四種不同的植被蓋度下(10%,40%,70%,90%)變化曲線有著共同的變化趨勢: 隨著土層深度的增加,土壤飽和導水率總體呈現下降趨勢。產生這個影響的根本原因是隨著 土層深度的增加土壤空隙度在減小,這是因為在青藏高原的這種特殊的高寒草甸生態條件下,
隨著土層深度的增加植被的根系越來越少,也使得土壤空隙度減小,這勢必影響到飽和導水
率的減小。
(2)在 20~30cm 土層的時候,變化趨勢出現了一個拐點。這是因為在長江源區這個特 殊的高寒草甸區,主要植被就是藏嵩草和小嵩草,而嵩草的須根層主要分布在 20~30cm 的 土層,經過對土壤剖面的觀察,這個土層根系吸收水分很明顯,這就使得 20~30cm 土層的 土壤空隙度 10~20cm 土層的大,因此 20~30cm 土層的飽和導水率相應就大于 10~20cm 土層 的飽和導水率。
3.2 植被蓋度對入滲的影響
植被變化對區域水平衡的影響是目前國際水文科學最具活力的研究領域,尤其是大量研 究表明大尺度土地覆蓋與土地利用變化是導致區域氣候變化的重要因素,其中以水分、熱量 傳輸變化為改變氣候的主要方式[9],因此 IGBP 將水循環的生物圈作用研究(BAHC)一直作為 其核心計劃[9,10].在描述土壤-植被-大氣相互作用關系時,降水入滲不僅依賴于隨機的降水事 件,而且受制于土壤水分狀況[10,11].同時,不同植被類型的土壤具有不同的水分平衡關系,土壤 濕度依賴于植被類型和土壤特性,但反過來是決定不同植被蒸散量的關鍵因素[12].土壤水分 是連接氣候變化和植被覆蓋動態的關鍵因子,對不同地區的不同植被類型土壤水分平衡要素 的確定,是一個研究較早但始終未能解決的水文科學問題,也是新生邊緣學科———生態水文 學的主要研究內容之一[13].
影響土壤降水入滲的主要因素是土壤自身性質如土壤質地、容重、含水率、孔隙度、地 表結皮、水穩性團粒等因子[14],而植被蓋度的不同,改變了土壤質地,使土壤中各因子發生了較 大的變化,從而影響到土壤入滲速率之間有較大差異[2]。
植被蓋度是影響土壤入滲的重要因素之一。文章初步分析了長江源區高寒草甸區植被 蓋度和土壤飽和導水率關系。
在研究區小流域內,分別選取植被蓋度 10%、40%、70%和 90%的樣地。對 0~10cm,
10~20cm,20~30cm 和 30~40cm 土層進行試驗。
圖 2 土壤飽和導水率與植被蓋度關系圖
Fig2. The curve between hydraulic conductivity and vegetation cover
表 1 土壤導水率回歸方程僅有相關系數,沒有顯著性檢驗,下面回歸方程難以成立
Tab.1 Hydraulic conductivity equation of regression
研究結果表明:
1、0~10cm,10~20cm,20~30cm 三層土層的飽和導水率曲線都很好得表明了:隨著植被蓋 度的增大,土壤飽和導水率明顯有規律地增大(見圖 2)。這是因為植被的存在很好的增大 了土壤的空隙度,增大了土壤的飽和到水率。這對土壤水分的保持很水文循環有著很重要的 意義。這也是江源地區能夠為長江涵養水源的一個重要條件。
2、30~40cm 土層的飽和導水率曲線表明了:在植被蓋度 70%以下的區域,植被的不足以影 響到 40cm 的地層,而且飽和導水率很小。因為中低蓋度的植被須根層很少達到 40cm,
20~30cm 是須根的主要存在層。而在 90%的植被蓋度下在 30~40cm 的土層也有很大的飽和 導水率,這是因為在高蓋度的區域,植被的須根層生長良好,須根層達了 40cm,甚至更深。 這也說明了,植被蓋度越高越有利于水分的入滲和保持。
3、表 1 表明了在長江源區的高寒草甸生態環境下,植被蓋度和飽和導水率之間的相關方程 為二次多項式。相關系數都在 0.98 以上。這對水文循環研究和高寒草甸下水文模型的建立 都是一個很大的幫助。
4、圖 2 中的三條變化曲線的變化趨勢,隨著土層深度的增加,變化越來越緩慢,這也表明: 植被蓋度對表層土壤飽和導水率影響最大,隨著土層深度的增加,植被的影響越來越弱。
30~40cm 的變化曲線也表明了 30cm 以下的土層,高寒草甸的植被對土壤的入滲較小。
3.3 地溫對土壤入滲的影響 土壤溫度也稱地溫,是影響凍結土壤入滲能力大小的一個主要因素。在非凍結條件下,
土壤溫度對土壤入滲能力的影響甚微,但是在凍結條件下,土壤溫度是土壤水分發生相變的 兩大條件之一,對土壤入神能力的影響顯著。土壤溫度的變化引起土壤中固、液相水分比例 的變化,進而引起土壤孔隙狀況的變化,對土壤的入滲特性產生較大的影響[15]。
為了觀測地溫對土壤入滲的影響,本試驗選取在 90%植被蓋度下 10~20cm 深度的土層, 做連續的飽和導水率觀測試驗。為了避免每次試驗對土壤結構和性質的破壞而引起的誤差, 試驗設計再 90%植被蓋度下,選取 5 個點,在 1 天內的 5 個不同時間分別對 10~20cm 深度 的土層進行飽和入滲試驗,測算出飽和導水率,別記下當時的 10~20cm 土層的地溫。為了 更好的看出地溫和飽和導水率的關系,把地溫從低到高排列,并與飽和導水率對應,得到下 面的地溫與飽和導水率關系圖。
圖 3 地溫與飽和導水率關系圖
Fig2. The curve between hydraulic conductivity and ground temperature
研究結果表明:長江源區高寒草甸生態環境下,土壤的入滲與地溫關系密切。隨著地溫
的升高,飽和導水率隨之升高,兩者的關系是二次多項式。在地溫 0℃以下的土層,為凍土 層。在凍土層上,土壤水分是不會下滲的。
3.4 次降雨入滲過程隨植被覆蓋的變化
在一次降雨后,土壤水分在垂直剖面上的變化過程是土壤水分變化的主要過程之一,是 研究降雨、地表徑流、降雨入滲以及土壤水分變化的重要內容[16]。為了研究一次降水后, 土壤水分在不同植被蓋度下的分布變化,選取典型的樣地和地段,對不同植被蓋度下
(10%,50%,90%)土壤剖面深度 0~10cm,10~20 cm,20~30cm 和 30~40cm 范圍的土壤含水 量進行了觀測和分析。
結果表明,高寒草地土壤含水量與植被蓋度有密切的相關性。從 0~10cm 土壤含水量 變化可以發現,在 0~10cm 的土層范圍內,蓋度不同,土壤水分變化明顯(圖 4),雨后在植 被蓋度為 10%的草地的初始土壤含水量最高,90%蓋度草地的初始含水量最低。在一次降雨 后,植被蓋度較高的地表土層較疏松,空隙度相對較大,土壤的入滲能力較好,使水分很好 得下滲到深層土壤。所以,在雨后的初始階段,植被蓋度越高,0~10cm 土層的水分含量越 越低。隨著時間的變化,含水量總體都有減少的趨勢,這是水分不斷向下入滲的原因。植被
圖 4 不用植被蓋度相同土層深度的水分變化
Fig4.ange of the soil moisture for different coveragein the same soil depth
蓋度越高的草地,土壤含水量變化越慢。90 分鐘后 90%蓋度草地的含水量遠遠高于低
蓋度的草地,這也表明了高植被蓋度的草地良好的持水能力。這主要是植物的地上部分吸收 太陽輻射,減少了輻射到地面的熱量,降低了土壤表層的蒸發量.植物根系有很好的親水性,由 于表面張力作用使根系對土壤中的水分起阻滯作用[16]。10~20cm 和 20~30cm 土層的雨后土 壤含水量變化曲線圖呈現出和 0~10cm 土層相同的變化趨勢。
30~40cm 的土壤水分變化與 30cm 以上的土層含水量變化曲線不同。雨后初始含水量不 再是 10%蓋度的草地,而是 50%蓋度的草地,而 10%蓋度的草地含水量最低。這說明了在
30~40cm 土層,10%蓋度的草地土壤空隙度小,水分不利于下滲到 40cm 的深層土壤,而 90% 蓋度的草地持水能力比較強,這也使 30~40cm 的土層的含水量小于 50%蓋度的草地。隨著 時間的變化,含水量總體仍然是減少趨勢。90 分鐘后 30~40cm 土層的土壤含水量仍然和初 始含水量關系一樣:50%蓋度草地的最高,10%蓋度草地的最低。
以上關系充分說明植被蓋度對土壤水分入滲的影響。土壤的入滲能力和持水能力的對比 都對土壤含水量有很大影響。隨著植被蓋度增大,土壤的入滲和持水能力都增加,入滲能力 變化得更明顯。!
4.結論
綜上所述,
1. 隨著土層深度的增加土壤飽和導水率總體呈現下降趨勢。30cm 的須根分布層增大了 土壤的入滲能力。土壤飽和導水率從大到小依次為在 0~10cm、20~30cm、10~20cm 和 30~40cm 土層;
2. 在 0~10cm,10~20cm,20~30cm 的 3 個土層剖面上,隨著植被蓋度的增大,土壤飽
和導水率明顯有規律地增大,并呈現出二次多項式關系;
3. 在 30cm 以下的土層,植被影響較小,只有在 70%以上的高蓋度植被覆蓋下,影響 才比較明顯,并呈現出 3 次多項式關系;
4. 長江源區高寒草甸生態環境下,土壤的入滲與地溫關系密切。隨著地溫的升高,飽 和導水率隨之升高,兩者的關系是二次多項式。
5. 次降雨量的試驗充分驗證了植被和土壤飽和導水率的關系。植被是高寒草甸生態環 境下,影響水分循環的重要因素,好的植被有利于水分的入滲和保持,對長江源區生態水文 環境有重大意義。
參考文獻
[1] 蔣定生.黃土高原水土流失與治理模式[M].北京:中國水利水電出版社,1997.
[2] 郭忠升,吳欽孝,任鎖堂.森林植被對土壤入滲速率的影響[J].陜西林業科技,1996,(3):27-31.
[3] Helalia A M.The relation between soil infiltration and effective porosity in different soils[J].Agricultural Water
Management,1993,24:39-47.
[4] Philip J R.The theory of infiltration:5,the influence of the initial moisture content[J].Soil Sci,1958,84:329-339.
[5] Baunhards R L.Modeling infiltration into sealing soil [J].Water Resource Res,1990,26(1):2497-2505.
[6] Mein R G, Larson C L. Modeling infiltration during a steady rain[J]. Water Resource Res,1973,9(2):384-394.
[7] Duck H R. Water temperature fluctuations and effect irrigation infiltration[J].Trans. ASAE,1992,34(2):193-199.
[8] 劉賢趙 , 康紹忠 , 等 . 黃土區坡 地 降雨人滲 產 流中的滯 后 機制及其 模 型研究 [J]. 農 業工程 學
報,1999,15(4):95-99
[9] Hutjes R W A, Kabat P, Running S W,et al. Biospheric aspectsof the hydrological cycle [J]. Journal of
Hydrology, 1998, 212-213: 1-21.
[10] Zhang L, Dawas W R, Reece P H. Response of mean annual evapotranspiration to vegetation changes at catchment scale [J].Water Resour. Res., 2001,37(3): 701-708.
[11] Dawson T E. Hydraulic lift and water parasitism by plants: implications for water balance, performance, and
plant-plant interaction [J]. Oecologia, 1993,95: 565-574.
[12] Rodriguez-Iturbe I. Ecohydrology: A hydrological perspective of climate-soil-vegetation dynamics [J]. Water Resour. Res.,2000,36(1): 3-9.
[13] Zhao Wenzhi, Cheng Guodong. Ecohydrology - a science for studying the hydrologic mechanisms of ecological patterns and processes [J]. Journal of Glaciology and Geocryology, 2001,23(4):450-457. [趙文智,程國 棟.生態水文學———揭示生態格局和生態過程水文學機制的科學[J].冰川凍土, 2001,23(4):450-457.
[14] 袁建平 , 張素麗 , 張春燕 , 等 . 黃土 丘陵區小 流 域土壤穩 定 入滲速率 空 間變異 [J]. 土壤 學 報,2001,38(4):579-583.
[15] 陳軍峰. 不同地表條件下季節性凍融土壤入滲特性的實驗研究. 太原理工大學碩士研究生學位論 文,2006,5.