前言:我們精心挑選了數篇優質化學氣相沉積的概念文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
【關鍵詞】DLC RF--PECVD 等離子體 邊界擾動
1 引言
隨著軍事技術及航空航天技術的發展,紅外技術越來越受到人們的重視,在軍事航天領域有著舉足輕重的作用。但紅外元件的工作環境往往非常惡劣,而用作紅外的窗口材料如Ge,ZnS,ZnSe,GaAs,氟化鎂(MgF2),藍寶石,尖晶石等在應用中都存在一些問題,比如Ge在高溫時透過率下降,ZnS耐濕性差,ZnSe雖然紅外透過率高,但機械強度和耐腐蝕性差等等,當在這些材料表面鍍上DLC保護膜后,這樣的紅外窗口既有較高的紅外透過率,又有很好的綜合性能抵抗惡劣的環境且制備成本低,因此是目前普遍采用的方法。
DLC膜的制備方式有很多種,主要分為物理氣相沉積和化學氣相沉積。目前在光學級DLC應用方面廣泛采用的沉積方式是等離子體增強化學氣相沉積,常用的等離子體增強化學氣相沉積法有兩種:直流(DC--PECVD)法和射頻(RF--PECVD)法。DC--PECVD法沉積薄膜的優點易于控制極板負偏壓,可以對極板負偏壓進行大幅度調節,缺點是沉積絕緣薄膜時,薄膜表面積累大量電荷,這些電荷會阻礙薄膜生長,使薄膜的沉積速率降低,薄膜厚度減少。采用射頻等離子體增強化學氣相沉積(RF--PECVD)法,有效的解決了表面電荷積累問題,從而提高了沉積速度。
RF--PECVD分為感應圈式和平行板電容耦合式兩種,感應圈式存在沉積速率低且膜層質量較差等問題,因此實際中多采用平行板電容耦合式。用這種方法制備薄膜,沉積速率高,膜層致密均勻,穩定性好,本文涉及的實驗設備就屬于這種類型。
用射頻等離子體增強化學氣相沉積(RF--PECVD)法沉積DLC膜時,會出現邊緣和中部的膜厚差異,特別是波長在5微米以下時,僅憑肉眼就可以看到色環。色環的出現是由于膜層的物理厚度不同造成的,邊緣的厚度大于中部。色環的出現不僅影響外觀而且對高品質成像也有影響,對膜厚差異產生的原因在下面的實驗中進行了探索性的研究,為制備高均勻性DLC膜提供了依據,此實驗也是工藝生產中一個真實事件。
2 實驗過程
2.1 實驗設備
沈陽科學儀器廠生產平行板電容耦合式RF--PECVD設備,設備外觀見圖1,設備內部沉積電極結構見圖2。該設備主要由真空沉積系統,真空抽氣系統,氣路系統,電氣控制系統以及控制面板組成。
需要鍍制的基片是直徑為280mm的硅片,因為是雙平片,為了防止背面被設備的極板劃傷,在基片的底部裝有鋁質金屬夾具,夾具的外徑288mm,壓邊1mm深度1mm。鍍制過程完全按照工藝文件進行,當基片鍍制完成從真空室取出后,發現距基片邊緣1厘米左右的環行區域內的膜層全部脫落,基片中部膜層完好的奇怪現象,在排除了工藝參數的影響后,最后確定造成這個問題的原因就是1mm深度的金屬夾具。
2.2 分析過程
射頻放電系統中,一般有一個電極接地,放電時在不接地的那個電極上出現負的直流偏壓,這就是所謂的電極自偏壓現象。從圖2中可以看到上極板接地,下極板及硅基片工作在負偏壓狀態下。輝光放電產生等離子體,源氣體(如甲烷,丁烷等)分解成各種中性粒子和帶電粒子,粒子之間相互碰撞發生一系列化學反應,等離子體中的正離子在負偏壓的作用向下極板聚集,在硅基片表面形成正離子鞘層,正離子在鞘層中被加速撞擊硅基體表面,在分子量級上形成高溫高壓,這就是類金剛石膜的成因。
當硅基片加裝了金屬夾具后的狀態見圖3,從圖3中可以明顯的看到由于加裝了金屬夾具使得基片的中部區域與下極板之間形成懸浮狀態,邊緣則通過金屬夾具與下極板接觸,也就是說同一個基片的中部和邊緣工作在不同的狀態下。當不帶電的懸浮物插入到等離子體中時,由于等離子體中的電子和正離子都在進行熱運動,根據分子運動論,在單位時間內落在單位面積上的粒子數(1.17)ne、 ni分別是等離子體中的電子濃度和正離子濃度,ve、vi 是電子和正離子各自的平均熱運動速度。如果正離子是單荷的,則ne=ni,所以他們的電流密度分別是(1.18)。
由于等離子體中ve比vi大,所以je>ji。于是懸浮物就出現負的凈電荷。由于金屬夾具使硅基片與工作在負偏壓狀態的下極板連接,因此硅基片處于負電壓狀態。等離子體具有集體準中性特性,當帶負電性的導體進入等離子體后其周圍會有正電荷聚集,以抑制其對等離子體準中性的破壞。因此硅基片的表面聚集有正電荷。假設正電荷形成的電位為Ug,下極板電位即放電區域最低電位為Us,在懸浮區域形成一個電位差為Ug-Us的電場,在這個電場的作用下電子由下基板向硅基片快速移動。
為了進一步說明懸浮區域對沉積的影響,將放電區域內的工作狀態等效為電路見圖4,圖中R為硅基體上表面的離子鞘層,放電區域的大部分能量消耗在這部分,即DLC的成膜區域。R1為金屬夾具與硅片之g的接觸電阻及夾具自身電阻之和,R2為基片的中部懸浮區域等效電阻。由于它們工作在同一區域,因此可以等效為并聯狀態。圖中A點為離子鞘層上部等離子體的電位(如果忽略上極板的電子鞘層,這個鞘層的電位差很小,那么A點電位近似為上極板電位);B點為下基板的電位即放電區域的最低電位。AB之間的電位差UP約等于自偏壓。
根據并聯電路的特性我們知道,當兩條支路的電阻阻值相差10倍以上,電流幾乎全部從低阻值支路通過。
以上比值是在假設電阻率相同的情況下,實際中R2的電阻率小于R1的電阻率。這是因為隨著硅基片表面的正電荷的增加,懸浮區域鞘層的厚度會增加,鞘層內粒子的運動速度變快密度變大,根據公式2可知電流會變大;懸浮區域的電子數增加又會吸引更多的正電荷,當達到一定值時懸浮區域接近導體。因此放電區域的大部分電流通過懸浮區域流通。
放電區域的電壓是不變的,因為R1≥70R2根據歐姆定律可知I1≤70I2,又根據電功率的公式P=U×I ,可知P1≤70P2,P1為圖3中深色區域的功率即金屬夾具與硅基片接觸的環形區域,P2為圖3中淺色區域的面積即懸浮區域的面積,所以硅片邊緣的功率遠低于硅片中部的懸浮區域。
2.3 邊界擾動
比功率密度過低,電場供給反應氣體粒子平均能量不足以打開C-H鍵,或讓C鍵合理重組時,不能成膜。過高時,粒子對膜層注入能量過大,會破壞已形成的C-H鍵,因而也無法成膜。所以比功率密度必須在一個合適的范圍內。硅基片的下部雖然形成R1R2區域,但上部的正離子鞘層是一個整體。假設兩種極端的情況:第一R2區域良好的導電性吸引著R1區域的全部正離子加入其中,則R1區域的電流為零,根據電功率的公式則P為零,比功率密度也為零,所以無法成膜。第二 功率不變,正離子的減少相當于比功率密度公式中Py趨近于零,則比功率密度接近無窮大,因此也無法形成DLC膜。R1與R2的比值越大這種影響越明顯,就像是一種競爭的關系,結果愈強則愈強,愈弱則愈弱。對于同一個基片這種影響還有漸變的范圍,似乎是R1逐漸過渡到R2,所以脫膜不止在1mm壓邊的環形區域里,而是遠大于它的10mm左右的環形區域。我們將這種影響定義為邊緣擾動現象,它與相鄰區域的電阻比值有絕對關系,在實際中確實發現:直徑小于40mm的硅平片,裝金屬夾具不會出現邊緣掉膜現象。
2.4 驗證試驗
當把金屬夾具去除,用相同的工藝重新鍍制,邊緣掉膜的現象消失。膜層良好。
為了驗證這一結論,用直徑為:250mm 的硅片兩件,一件裝夾具(SEP1),另一件不裝(SEP2),用相同的工藝鍍制類金剛石膜,鍍制完成后做環境實驗(環境實驗條件: 溫度50℃;相對濕度95%;時間:24小時),結果見表1。
3 結果與討論
在輝光放電等離子體中,由于電導率不同的相鄰區域,邊緣出現相互擾動的現象,是普遍存在的。以驗證試驗的SEP2為例,SEP2的膜層出現色環,色環的出現依然是邊緣擾動的結果,與下基板相比,硅片自身的電阻是不能忽略的,因此在硅片的周邊與基板之間又形成了電導率不同的相鄰區域,受低電阻率的下基板影響,硅片周邊一定區域內的功率密度也會增高,造成與中部的沉積速率不同,邊緣沉積速率大于中部。從DLC膜的成膜原理我們知道比功率密度是有一定范圍的,高于或低于這個范圍都無法沉積DLC膜。盡管硅片的周邊和中部的功率密度不同,但由于它們都在這個范圍內,因此都沉積出良好的DLC膜。
4 結語
在工藝生產的過程中S多看似怪異的現象,其實背后都有本質的原因,只要進行深入分析研究,就能找到規律,從而找到解決問題的方法,甚至會有新的發現。
參考文獻:
在《材料化學》緒論課的教學過程中,采用啟發引導教學方式,以“材料、材料與化學、材料化學”為主線進行教學設計,通過講解材料發展中的化學,引入材料科學與化學的區別與聯系,重點從材料結構、制備、性能和應用四個方面講授了材料研究中的化學問題,使學生對本課程的內容有了清晰的認識,激發了學生學習本課程的信心和興趣,并取得了滿意的教學效果。
關鍵詞:
材料化學;緒論課;教學設計
材料化學是材料科學與化學的交叉學科,伴隨著材料科學的發展而誕生和成長,即是材料科學的重要部分,又是化學學科的一個分支[1]。目前,很多高等學校的化學和材料類專業開設了《材料化學》這門課程。《材料化學》是南陽師范學院材料化學專業的核心基礎課程,對于培養學生的材料科學基礎知識,分析和解決材料制備和應用中的化學問題的能力起到了關鍵作用。但是該課程涉及的知識面廣泛,內容龐雜、概念甚多、加上課程改革,理論課時數減小,學生在學習《材料化學》課程過程中,普遍存在概念混淆、重點難以掌握等問題。緒論是一門課程的開場白和宣言書,是師生之間學習和交流的起始點,能為學生建立起一門課程的知識輪廓。通過對緒論進行學習,學生可以了解課程在所學專業中所處的地位和作用,以及該課程的教學內容、學習方法和考核方式等問題[2]。如何激發學生學習該課程的興趣,提高課程的教學質量,緒論課在整個課程教學中有著舉足輕重的地位。結合近年來的教學實踐,就如何講好《材料化學》緒論課談一些心得。
1首先明確課程性質、特點及地位
教學之初,首先明確該課程作為專業核心課程的重要地位,是學習后面材料專業課程的基礎課程,同時明確考核方式,加強學生對本課程的重視程度。材料化學是材料科學和化學學科的交叉學科,課程內容既涉及工程材料應用中的實際問題,又包括材料結構及制備中的化學問題。作為一門交叉學科,很多知識點與材料學和化學課程中的相關內容重復,很多學生以為學過相關知識,就會從思想上松懈。然而,相關知識點雖然出現重復,但在不同學科中講授的重點是不同的。在講授材料化學課程的過程中,要著重培養學生利用化學的思維解決材料科學中的問題,使學生深刻領會化學與材料科學交叉的重要意義。通過一些實例,講解本課程與化學和材料相關課程的區別和聯系,使學生更加深入了本課程的性質和地位。材料科學是偏實際應用的工科課程,化學是偏理論的理科課程,材料化學則是利用化學的理論解決材料應用中的實際問題。
2材料
以材料的實際應用為引子,如材料在航天航空、交通運輸、電子信息、生物醫藥等領域的應用,帶領學生進入學習狀態,引導學生回想什么是材料?材料的種類?提出材料是對人類有用的物質,是人類賴以生存和發展,征服自然和改造自然的物質基礎;是人類進步的里程碑。然后介紹材料的發展歷史,說明人們對材料的使用,是從最早的天然材料,依次經歷了陶瓷、青銅、鐵、鋼、有色金屬、高分子材料以及新型功能材料。根據材料的發展史,啟發學生思考材料研究和發展過程中的規律和特點。人們對材料的使用經歷了從天然材料到合成材料,從傳統材料到新興材料。傳統的材料主要以經驗,技藝為基礎,材料靠配方篩選和性能測試,通過宏觀現象建立的唯象理論對材料宏觀性能定性解釋,不能預示性能和指明新材料開發方向,而新型材料則以基礎理論為指導。材料科學的歷史表明,當一種全新的材料在原子或分子水平上合成后真正巨大的進展就常常隨之而來。化學的發展往往導致材料技術的實質性進步。在新材料的研發和材料工藝的發展中,化學一直擔當著關鍵的角色[3]。任何新材料的獲得都離不開化學,以石墨烯為例,物理學家主要關注其電子結構及輸運理論,材料學家主要測試材料的電磁、光電、傳感和催化等性能,而化學家的任務則是利用化學氣相沉積和插層剝離等方法制備該材料。只有通過化學氣相沉積法制備出高質量大尺寸的石墨烯,才能推動石墨烯在電子信息領域走向實用化。
3材料與化學
材料化學是材料科學與化學學科的交叉,很多學生容易混淆材料科學和化學的研究范疇。在本課程的第一節課,一項重要的任務是使學生明確材料科學和化學的研究內容和范疇,這對于后續相關概念的講解至關重要。材料科學的研究對象是材料,材料是對人類有用的物質,指的是人類用于制造物品、器件、構件、機器或其他產品的那些物質。而化學的研究對象是物質,物質是構成人類物質世界的基礎。材料是物質,但不是所有物質都可以稱為材料;材料科學是一門研究材料的成分、組織結構、制備工藝與材料性能及應用之間相互關系的科學;而化學則是從原子和分子角度研究物質的組成,結構、性質及相互轉變規律的科學。因此,化學研究的尺度范圍是原子、分子、分子納米聚集體。材料科學最早研究的尺度范圍在微米以上,如鋼和陶瓷的組織結構。隨著一些新興材料的出現和發展,人們對材料的研究甚至小到電子結構。如近些年發現的拓撲絕緣體,其表面導電,體內不導電的性質由其拓撲的能帶結構決定,而該拓撲結構則與電子的自旋運動有關,研究拓撲絕緣體必須從電子自旋角度認識其結構。因此,材料科學的研究范疇不斷拓展,并于其它學科交叉。
4材料化學
通過學習材料的發展歷程、材料科學與化學之間的區別和聯系,學生已經對材料化學有了一定的認識,引導學生給材料化學下一個定義。材料化學是關于材料結構、制備、性能和應用的化學。本校材料化學專業選用曾兆華、楊建文編著第二版《材料化學》作為教材,教材的章節也是按照材料結構、制備、性能和應用進行安排的[4]。在這部分內容講授過程中,可以讓學生以教材目錄為參照,講到相關內容可以與教材相關章節進行對應。
4.1材料的結構
從三個層次講解材料的結構,分別是電子原子結構、晶體學結構和組織結構。電子原子結構在很大程度上影響材料的電、磁、熱和光的行為,并可能影響到原子鍵合的方式,因而決定材料的類型。在這個層次上研究的化學問題主要涉及原子序數、相對原子量、電離勢、電子親核勢、電負性、原子及離子半徑等。原子序數決定了材料的化學組成,電負性決定材料內部原子之間的鍵合方式,從而影響材料的導電性、強度和熱膨脹系數等。晶體學結構主要指原子或分子在空間排列的方式,根據原子排列的有序性,將材料分為晶體和非晶體。晶體中出現局部無序,或對理想晶體的產生偏離,則出現缺陷。缺陷的存在影響材料的力學性能和電學性能等。如在本征硅內部摻雜磷元素,磷原子替代硅原子的位置,形成雜質原子缺陷,增加本征硅的導電性,形成N型半導體。組織結構主要指材料的物相組成及結構、晶粒的大小和取向等。在大多數金屬、某些陶瓷以及個別聚合物材料內部,晶粒之間原子排列的變化,可以改變它們之間的取向,從而影響材料的性能。一般來說,減小金屬的晶粒可以降低其熔點。在這一結構層次上,顆粒的大小和形狀起著關鍵作用。大多數材料是多相組成的,控制材料內部物相的類型、大小、分布和數量可以調控材料的性能。
4.2材料制備
材料合成與制備就是將原子、分子聚集在一起,并轉變為有用產品的一系列過程。材料制備的方法和工藝影響材料的結構,從而影響材料的性能。根據制備原理的不同,材料制備方法可以分為物理法和化學法。物理法指在材料制備過程中,僅改變材料內部原子或分子的聚集狀態,不涉及化學反應的方法。如真空鍍膜、濺射鍍膜、脈沖激光沉積法等。化學法則在材料制備過程中,涉及化學反應,并且有新物質的生成。如固相反應法、有機合成法、水熱法、沉淀法、化學氣相沉積法等。以石墨烯材料為例講解材料的制備方法。石墨烯作為二維單原子層材料,既可以采用物理法制備,也可以采用化學法制備。2004年發現石墨烯的報道,便是采用簡單的膠帶對撕方法制備,該方法依靠外力使石墨片層克服層間范德華力,使層與層之間分離,從而獲得單層石墨,該方法也稱為物理機械剝離法。利用甲烷、乙烯等烴類氣體作為碳源,鎳、銅、金等金屬作為基片,采用化學氣相沉積法則可以制備高質量大尺寸的石墨烯。另外,以石墨為原料,利用化學插層剝離的方法也可以用來制備石墨烯[5]。但不同方法制備獲得石墨烯的尺寸及性能差別較大,在不同的應用領域采用的石墨烯制備方法是不同的。
4.3材料性能
材料的性能由其結構決定,與材料制備的工藝和方法有關。性能是指材料固有的物理、化學特性,材料性能決定了其應用。廣義地說,性能是材料在一定的條件下對外部作用的反應的定量表述,例如力學性能是材料對外力的響應、電學性能是對電場的響應、光學性能是對光的響應等。因此,材料的性能可分為力學性能和特殊的物理性能。常見的力學性能包括材料的強度、硬度、塑性、韌性等。力學性能決定著材料工作的好壞,同時也決定著是否易于將材料加工成使用的形狀。鍛造成型的部件必須能夠經受快速加載而不破壞,并且還要有足夠的延性才能加工變形成適用的形狀。微小的結構變化往往對材料的力學性能產生很大的影響。材料特殊的物理性能包括電、磁、光、熱等行為。物理性能由材料的結構和制造工藝決定。對于許多半導體金屬和陶瓷材料來說,即使成分稍有變化,也會引起導電性很大變化。過高的加熱溫度有可能顯著地降低耐火磚的絕熱特性。少量的雜質會改變玻璃或聚合物的顏色。
4.4材料應用
材料化學已經滲透到現代科學技術的眾多領域,如電子信息、環境能源、生物醫藥和航天航空等領域。例如,在電子信息領域,現代芯片制造離不開化學。光刻過程使用的光刻膠和顯影液,鍍膜過程中的化學氣相沉積和原子層沉積,刻蝕過程中的反應離子刻蝕,這些工藝過程都離不開化學的作用。在環境能源領域,新型光催化材料和太陽能電池材料的研究和開發,離不開化學法制備材料和對材料進行化學摻雜改性。在生物醫藥領域,對傳感材料進行化學改性提高其傳感特性,對仿生材料進行表面改性可以提高其生物相容性。在航天航空領域,各種輕質、耐高溫、耐摩擦等結構材料和功能化智能材料的研發都離不開化學。
5結語
通過對“材料化學”緒論課的精心設計,使學生明確了該課程的性質和重要地位,大量的實例激發了學生學習的興趣和求知欲,樹立了學生學好該課程的信心,為課程的深入學習起到了奠基石的作用。以“材料、材料與化學、材料化學”為主線進行講授,使學生對本課程的內容有了更加清晰和深入的認識,取得了良好的教學效果。
參考文獻
[1]禹筱元,羅穎,董先明.材料化學專業人才培養模式的改革與實踐[J].高教論壇,2010,1(1):23-25.
[2]楊卓娟,楊曉東.關于高校課程緒論教學的思考[J].中國大學教學,2011(12):39-41.
[3]唐小真,楊宏秀,丁馬太.材料化學導論[M].北京:高等教育出版社,1997.
[4]曾兆華,楊建文.材料化學.2版[M].北京:化學工業出版社,2013.
關鍵詞:微電子封裝;TSV;金屬化;鍵合;DRAM
引言
自1965年“摩爾定律”[1]提出以來,微電子器件的密度幾乎沿著“摩爾定律”的預言發展。到了今天,芯片特征尺寸達到22nm,再想通過降低特征尺寸來提高電路密度不僅會大幅提高成本,還會降低電路的可靠性。為了提高電路密度,延續或超越“摩爾定律”,微電子制造由二維向三維發展成為必然。其方法之一就是將芯片堆疊以后進行封裝,由此產生了三維電路封裝技術(3D IC packaging)。三維電路封裝技術中,芯片電極是通過金線鍵合的技術來實現電路的導通。如圖1a所示,隨著芯片疊層的增加,鍵合金線將占用大量的空間。同時由于連接的延長使得電路能耗升高、速度降低。因此,業界需要一種方法,能夠使得硅芯片在堆疊的同時實現電路的導通,從而避免采用硅芯片以外的線路連接。傳統半導體工藝主要是針對硅圓片表明進行加工并形成電路,而要實現硅芯片上下層之間的連接,需要一種能貫通硅芯片的加工工藝,即TSV技術(圖1b)。早在1958年,半導體的發明人William Shockley,在其專利中就提到過硅通孔的制備方法[2]。而TSV(through-silicon via)工藝的概念在1990年代末才提出,香港應用技術研究院和臺灣半導體制造公司于1998年申請相關美國專利[3,4],而關于TSV技術最早的于2000年[5]。相比傳統金線鍵合,TSV技術不僅能減少金線所占用的平面尺寸,由于減少了金線焊點使得Z軸方向達到最密連接,三維尺寸達到最小;同時TSV技術降低了連接長度,可有效降低芯片能耗,提高運行速度。
(a)金線鍵合技術 (b)TSV技術
TSV制造工藝分以下幾個步驟,分別是:通孔制造,絕緣層、阻擋層制備,通孔金屬化,芯片減薄和鍵合。總得來說TSV技術難度遠大于傳統金線鍵合技術。
1.1 TSV孔制造
雖然TSV稱為硅通孔技術,但是在加工過程中大多數是對盲孔進行加工,只有在其后減薄階段打磨芯片底部,露出填充金屬,才使得孔成為真正的通孔。TSV工藝的第一步就是盲孔的制造(圖2a)。TSV的盲孔制造有三種方法,分別是干法刻蝕、濕法刻蝕和激光鉆孔。干法刻蝕是使用等離子氣體轟擊材料表面達到刻蝕效果的方法;而濕法刻蝕是使用化學溶劑來刻蝕材料表面。相比之下干法刻蝕具有刻蝕速率高、方向性好,可以制造大深寬比的孔、刻蝕速率可控性強等優點,但是相對成本較高,總得來說干法刻蝕是通孔制造中最常用的方法[6]。而激光打孔加工速率更高,但是由于熱損傷使得通孔的精度下降,因此使用較少。
1.2 絕緣層、阻擋層制備
如圖2 b所示,由于Si是半導體,通常在Si基體上沉積金屬前都需要制備一層絕緣層,絕緣層為SiO2或SiNx,通過增強等離子體化學氣相沉積(PECVD)方法制備。另外為了防止金屬擴散進入基體,還需要在絕緣層上制備一層阻擋層。阻擋層通常由TiNx組成,通過有機金屬化學氣相沉積(MOCVD)制備。
1.3 通孔金屬化
目前TSV金屬化過程中最常用的金屬是Cu。通孔金屬化是TSV技術中的難點,其成本占TSV工藝成本40%以上。通常芯片制造中,金屬導體層通過物理氣相沉積(PVD)方法制備。相對只有幾十納米的導線,若寬度達到5~100m、深度達到50~30m的TSV通孔也用PVD方法制備,其所耗費的時間就是業界所不能允許的。因此TSV中通孔金屬化通常是使用電鍍的方法來進行。但是由于Si基體導電性差,不適合進行電沉積,所以金屬化必須分兩步完成金屬化:先使用PVD方法沉積厚度為數個納米的種子層(圖2c),使得硅基板具有導電性,然后在進行電鍍過程來完成金屬化(圖2d)。此方法與大馬士革電鍍相似。
與大馬士革電鍍不同的是由于TSV通孔通常深寬比較大,約在1:1與10:1之間。由于在電鍍過程中孔口電力線比較密集,若采取傳統電鍍工藝,孔口將快速生長,導致孔洞閉合,使孔內難以得到金屬沉積。因此TSV工藝中通常對鍍液進行調整來滿足工藝要求,即在鍍液中添加加速劑、抑制劑和整平劑。最常用的加速劑是聚二硫二丙烷磺酸鈉(SPS),SPS能在電鍍中起到催化作用,提高Cu2+沉積速率[7];最常用抑制劑為聚乙二醇(PEG),PEG的存在能較大的抑制電極的活性,從而降低沉積速率。最常用的整平劑為煙魯綠(JGB)。由于PEG分子鏈較大,不容易進入通孔內部,從而容易聚集在孔口,使得孔口處金屬生長得到抑制[8]。相反SPS由于分子量較小,更容易進入通孔內部,特別是聚集在通孔底部,使得通孔底部的金屬生長得到加速。JGB在生產中是不可缺少的添加劑,它的存在有利于加速劑向微孔中傳質[9],同時JGB會與PEG純在協同作用,將產生2倍于單獨添加劑的抑制效果[10]。在加速劑、抑制劑和整平劑的共同作用下金屬化過程自底部而上,使整個通孔都得到填充。