本站小編為你精心準備了礦區土壤污染中遙感技術的應用參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
摘要:
遙感技術具有宏觀性和現勢性強、綜合信息豐富等優勢,為礦區土壤重金屬污染評價提供了可行的方法。本文綜述了遙感技術在礦區土壤重金屬污染評價方面的研究,并對其進行了展望。
關鍵詞:
遙感;土壤;重金屬
1.引言
礦產資源是生產資料和生活資料的重要來源,人類社會的發展進步與礦產的開發利用密不可分。礦產的開采、冶煉、加工過程中大量的鉛、鋅、鉻、鎘、鈷、銅、鎳等重金屬以及類金屬砷等進入大氣、水、土壤引起嚴重的環境污染。根據2014年4月17日環境保護部、國土資源部的《全國土壤污染調查公報》,“全國土壤環境狀況總體不容樂觀,部分地區土壤污染較重,總的超標率達16.1%”、“在調查的70個礦區的1672個土壤點位中,超標點位占33.4%,主要污染物為鎘、鉛、砷和多環芳烴”。資源、環境是制約社會經濟發展的兩大瓶頸,如何克服這個瓶頸問題同時又能實現礦山開發的可持續發展,是我國社會必須面對和解決的緊迫的社會問題[1]。傳統的土壤重金屬污染監測方法有實驗室監測、現場快速監測等方法。實驗室監測方法雖然測量精度高,但是存在勞動強度大、采樣分析費時,適用范圍小的缺點;現場快速監測法雖然具有大面積、連續、高密度獲取信息的特點,但是還大多處于定性或半定量的試驗階段,易受周圍因素影響[2]。各種巖石、土壤、植被及水體等均有各自獨特的光譜特征。地物光譜特征的差異,是遙感技術識別各類地物的主要依據,也是應用遙感技術開展土壤重金屬污染評價的理論基礎。遙感技術以其宏觀性和現勢性強、綜合信息豐富等優勢,在礦區土壤重金屬污染評價中起到了積極的先導作用,并取得了良好的應用效果。一般情況下,土壤中的有機質、水分、鐵氧化物、重金屬等對土壤光譜反射率有一定影響。國外相關研究起步較早,始自20世紀六十年代土壤光譜研究[3]。國外有研究中表明,當土壤有機質含量超過2%,鐵氧化物、重金屬等光譜信息有可能被土壤中的有機質的光譜信息所掩蓋,進一步加大了光譜信息提取的難度;同時土壤的反射率會因鐵氧化物的存在而在整個波譜范圍內有明顯的下降趨勢,土壤的光譜反射率都朝著藍波方向下降,并且這種下降趨勢可以擴展到紫外區域[4],相關研究陸續拓展至礦區重金屬污染中來[5];國內自20世紀八十年代在云南騰沖系統地開展土壤光譜與理化性狀關系的研究[6~7],并于九十年代末開展遙感技術在礦區重金屬污染監測的探索。目前遙感技術對礦區土壤重金屬污染評價研究主要有兩個方向:一是植被反演。根據地表植被覆蓋以及重金屬在植被根莖、葉片中富集,植被在重金屬脅迫下葉綠素等光譜特征發生變化的特點,通過植被光譜數據反演土壤中的重金屬含量,間接評價重金屬污染。二是土壤監測。利用重金屬對土壤波譜特性的影響,通過土壤光譜數據監測重金屬含量[8-10]。
2.植被反演方法
植被在生長發育的過程中,礦區土壤中的重金屬被吸收和富集,對植物的產生的影響主要體現在長勢方面產生了生物地球化學效應,如色素含量、水含量、葉面溫度的變化,進而影響植被的光譜反射率,植被光譜的變化能夠在遙感光譜信息中有所體現。基于以上認識,可以通過植被光譜信息、波譜曲線變化的分析提取污染信息[11]。不同植物對重金屬敏感性不同,重金屬脅迫導致植物體內生物化學成分發生改變,使電磁波譜反射特性不同。植被反演方法的原理是,運用遙感技術研究重金屬污染條件下植被光譜特征變化,建立植被光譜特征與重金屬污染條件下植被生長狀態參數變化之間的關系[7];研究葉綠素含量與重金屬污染之間的關系,分析葉綠素變化敏感的光譜指數及其響應規律,并進行了區域應用與驗證[11-13]。研究表明,隨著土壤中重金屬含量增加,植被近紅外、可見光反射光譜特征發生顯著變化,表現為可見光光譜反射增強,近紅外光譜減少,紅邊移動范圍減少[14-15]。此方法適用于礦區植被覆蓋較茂密的區域。王杰等(2005年)以江西德興銅礦去為實驗區,采用美國陸地衛星(Landsat)ETM+數據,采用比值分析、彩色合成、影像融合等方法增強影像視覺效果,對污染區的植被的波譜曲線與正常區的同種植被的光譜特征作對比,總結出受毒化植物葉冠的波譜形態與正常植物葉冠的波譜形態相比發生的形態變異的特征,總結對照區和污染區植被的波譜特征差異和各污染區的受污染程度,分析出不同污染區植物的受毒害程度[16]。雷國靜等(2006年)在南方植被茂密區離子型稀土礦區采用高分辨率QuickBird遙感數據采取坐標換的方式,消除土壤信息干擾,獲取了較真實的植被受污染影響程度的信息,運用了歸一化植被指數密度分割方法和通過旋轉二維散點圖獲得植被綠度方法來提取植被污染信息,取得了較好的效果[17]。李新芝等(2010年)以肥城煤礦區為實驗區,將SPOT-5數據2.5米分辨率的全色波段進行小波變換、主成分分析等融合方法提高圖像的空間信息量,綜合運用纓帽變換、植被與土壤相關性分析、支持向量機分類等方法提取礦區植被信息,并制作了植被等級分布圖,確定了不同污染程度的植被覆蓋面積,與礦區污染分布的規律具有較好的一致性[11]。黃鐵蘭等(2014年)以廣東大寶山礦區及周邊10公里范圍作為研究區,分別以ASTER及QuickBird為數據源,采用植被指數法和植被綠度法對植被污染信息進行識別,對獲取的植被綠度信息圖像進行密度分割,獲得植被污染程度及分布情況。同時建議大范圍的礦山植被污染信息的識別,考慮到項目綜合成本等因素,采用ASTER等低分辨率的數據源,選擇植被綠度指數法進行識別。對于小范圍的典型礦區,可選用QuickBird等高分辨率的數據源,用植被指數法進行識別[18]。由于混合像元、大氣效應的存在,植被信息提取過程中容易出現錯分、漏分現象;相關系數的設置易受經驗的影響。同時信息提取易受云層、山體陰影和人類生產活動的影響,均存在一定的誤提現象。未來應加強信息提取技術、多源遙感數據在植被反演中的應用研究,以解決上述問題。
3.土壤監測方法
土壤是由多種物理化學特性不同的物質的組成的混合體,例如有機質、重金屬、水、其他礦物質等。各種物質均有發射、反射、吸收光譜的特性,都會對土壤光譜特征產生影響,同時植被覆蓋也對土壤光譜的監測有較大影響,因此對于通過土壤光譜數據直接監測土壤重金屬含量的研究,尚處于探索階段。土壤監測方法的原理是,利用光譜分析方法室內測定土壤發射光譜數據,經線性回歸分析或指數回歸分析、標準化比值計算、特征光譜寬化處理后,利用回歸分析方法建立重金屬元素含量與發射率變量之間的土壤重金屬反演模型,定量反演出礦區土壤重金屬含量[19-23]。此類方法適用于植被覆蓋率較低的地區。ThomasKemper等(1998年)在西班牙Aznalcóllar尾礦庫潰壩事件土壤重金屬污染監測中,基于多元線性回歸分析(MLR)和人工神經網絡(ANN)方法分別通過化學分析、特征光譜--近紅外反射光譜(0.35−0.35μm)手段監測土壤重金屬含量,兩種手段對As、Fe、Hg、Pb、S、Sb等六種元素監測有較高的相似度。為相似礦區環境的監測提供了較好的借鑒意義[13]。李淑敏等(2010年)以北京為研究區,研究土壤中8種重金屬(Cr、Ni、Cu、Zn、As、Cd、Pb、Hg)的含量與熱紅外發射率的關系,分析了土壤重金屬的特征光譜,并模擬預測了重金屬含量的回歸模型,為基于遙感光譜的土壤重金屬含量監測奠定了基礎[24]。宋練等(2014年)以重慶市萬盛采礦區為研究區,通過光譜特征物質之間的自相關性來分析土壤中光譜特征物質,在回歸分析的基礎上建立As、Cd、Zn重金屬含量的遙感定量反演模型,監測三種重金屬含量,結果表明土壤在近紅外波段和可見光波段的反射值比值與土壤中As、Cd、Zn含量存在較好相關性[25]。部分研究對波段選擇和光譜分辨率的重要性認識不高,影響了重金屬元素光譜信息識別、重金屬污染預測精度;土壤中絕大部分重金屬,如鉛、鋅、鉻、砷等在可見光—近紅外波段區間的光譜特征較弱,易被植被、土壤波譜信息掩蓋,對直接利用土壤重金屬光譜特征來提取污染信息帶來了難度。研究發現,鐵氧化物的波譜特征較明顯,今后需加強土壤中重金屬與鐵氧化物相關性的研究,以提高污染信息提取的準確性。
4.未來展望
近年來,遙感技術用于礦區土壤重金屬評價取得了一定進展,今后要在以下幾個方面尋求突破:
(1)研究遙感信息提取新技術新方法。地物波譜特性易受土壤成分、大氣效應、植被等環境噪音的影響,需進一步加強波譜信息提取技術的研究,以提高遙感信息提取的準確性。
(2)加強田間光譜測量研究。目前對土壤重金屬監測僅局限于實驗室級別的光譜監測,需要進一步探討其他因素對重金屬吸附的影響以建立準確的土壤重金屬含量光譜估算模型,并進行大量而精確的實驗室與田間的光譜測量工作。
(3)由定性監測向定量監測轉變。遙感技術在礦區土壤重金屬污染評價方面的研究大多是定性或半定量評價,尚達不到定量評價。需在遙感反演土壤污染信息模型與理論方法、土壤重金屬含量與光譜變量的相關關系等方面加強研究,以接近或達到定量評價污染的水平,進而利用遙感技術評價大面積土壤污染及修復。
(4)研制高性能的衛星,提高遙感信息獲取能力。作為中國16個重大科技專項(2006年~2020年)之一的高分辨率對地觀測系統已進入全面建設階段,其中2014年8月發射升空的高分二號衛星空間分辨優于1m,這必將改變遙感數據普遍采用國外遙感數據(SPOT、Landsat、QuickBrid等)的局面。
參考文獻:
[1]賈志強.甘肅省白銀市礦山環境遙感調查與評價研究[D].桂林:桂林工學院,2009.
[2]龔海明,馬瑞峻,等.農田土壤重金屬污染監測技術發展趨勢[J].中國農學通報,2013,29(2):140-147.
[4]張甘霖,趙玉國,楊金玲,等.城市土壤的環境問題及其研究進展[J].土壤學報,2006,44(55):925-933.
[6]戴昌達.中國主要土壤光譜反射特性分類與數據處理的初步研究[M].見:遙感文選,北京:科學出版社,1981.
[7]豐茂森.遙感圖像數字處理[M].北京:地質出版社,1992:3~3.
[8]甘甫平,劉圣偉,等.德興銅礦礦山污染高光譜遙感直接識別研究[J].地球科學—中國地質大學學報,2004,29(1):119-126.
[9]朱葉青,屈永華,劉素紅,等.重金屬銅污染植被光譜響應特征研究[J].遙感學報,2014,18(2):335-352.
[10]李婷,劉湘南,劉美玲.水稻重金屬污染脅迫光譜分析模型的區域應用與驗證[J].農業工程學報,2012,28(12):176-182.
[11]李新芝.基于多源遙感數據的礦區植被信息監測方法研究[D].濟南:山東科技大學,2010.
[12]王秀珍,王人潮,黃敬峰.微分光譜遙感及其在水稻農學參數測定上的應用研究[J].農業工程學報,2002,18(1):9-13.
[14]徐加寬,楊連新,王余龍,等.水稻對重金屬元素的吸收與分配機理的研究進展[J].植物學通報,2005,22(5):614-622.
[16]王杰,等.遙感技術在江西德興銅礦礦區污染研究中的應用[J].山東科技大學學報(自然科學版)2005,24(4):66-69.
[17]雷國靜等.遙感在稀土礦區植被污染信息提取中的應用[J].江西有色金屬,2006,20(2):1-5.
[18]黃鐵蘭,等.廣東大寶山礦區植被污染信息的遙感識別方法研[J].地質學刊,2014,38(02):284-288.
[24]李淑敏,李紅,孫丹峰,等.基于熱紅外特征光譜的土壤重金屬含量估算模型研究[J].2010,31(7):33-38.
[25]宋練等.萬盛采礦區土壤As、Cd、Zn重金屬含量光譜測量與分析[J].光譜學與光譜分析,2014,34(3):812-817.
作者:劉海利 劉歡 單位:陜西地建礦業開發有限責任公司 陜西省土地工程建設集團有限責任公司