在线观看国产区-在线观看国产欧美-在线观看国产免费高清不卡-在线观看国产久青草-久久国产精品久久久久久-久久国产精品久久久

美章網 精品范文 三角函數值規律范文

三角函數值規律范文

前言:我們精心挑選了數篇優質三角函數值規律文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。

三角函數值規律

第1篇

關鍵詞:三角變換;誘導公式;倍角公式

三角變換是高中數學的重要內容,是歷年高考的必考內容,但也是學生們比較頭疼的地方,總結起來原因有二。第一,三角公式繁多,記憶時容易出錯;第二,即使公式都記住了,用公式解題時不知道該用哪一個公式。本文就針對學生學習時容易出現的問題,探討怎樣巧記活用三角公式進行三角變換。

一、把握公式規律,巧記公式

對三角公式的準確、熟練記憶是進行三角變換的前提,但是三角公式繁多:同角三角函數的基本關系式(8個)、誘導公式(36個)、兩角和與差的三角函數公式(6個)、二倍角公式(5個),再加上各組公式的變形,總共有60多個公式。如何才能保證記憶時不出現錯誤呢?這就要求學生在記憶時不要死記硬背,而是要把握其中的規律,巧記公式。下面,介紹各組公式的記憶方法。

1. 同角三角函數的基本關系式

這組公式常稱“三類八式”,即這八個公式分為三大類:平方關系、商數關系和倒數關系。八個公式可畫一個六邊形來記憶。

記法:①在最長對角線上的兩個三角函數的乘積為1。如:tanα?cotα=1;②在3個倒三角形中,上面兩個頂點的三角函數值的平方和等于下面頂點上的三角函數值的平方(中心點為1)。如:tan2α+1=sec2α;③任意一頂點上的三角函數值等于與之相鄰的兩個頂點的三角函數值的乘積。如:sinα=tanα?cosα.

2. 誘導公式

誘導公式看似很多,其實可以概括為一句口訣:“奇變偶不變,符號看象限”。誘導公式左邊的角可統一寫成k?±α(k∈Z)的形式,當為奇數時,等號右邊的三角函數名稱與左邊的三角函數名稱正余互變,當k為偶數時,等號右邊的三角函數名稱與左邊一樣;而公式右邊的三角函數之前的符號,則把α當做銳角,k?±α為第幾象限,以及左邊的三角函數之前的符號即為公式右邊的符號。

3. 兩角和與差的三角函數公式

這6個公式可分為三組,故可分為三組來記憶。每一組的特征都很明顯:兩角和(差)的余弦:余余、正正、符號異;兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同,分母異。

4. 二倍角公式

其實,二倍角公式是兩角和的三角函數公式當兩角相等時的特殊情況。把握住這點,記住兩角和的三角函數公式,二倍角公式自然就記住了。有規律有方法地巧記公式,有事半功倍的效果。

二、總結題型規律,活用公式

記 住了三角公式,如果不了解三角變換的提醒規律,也很難去用公式解題。三角變換題目雖然很多,但是也是有規律可循的,大致可以分為以下幾類。

1. 角的變換

進行角的變換常用的公式有誘導公式、兩角和(差)公式和二倍角公式。因此,題目當中需要化角時就要想到用這些公式,而不是往別的公式上去套。例1:已知α、β為銳角,且sinα=,cos(α+β)=-,求sinβ的值。解析:此題就需要用到角的變換β=(α+β)-α,然后兩邊取正弦,右邊用兩角差的正弦公式展開即可。

2. 函數名稱的變換

一般是切割化弦或弦化切割,常用公式為同角三角關系式中的倒數關系式和商數關系式。例2:已知tanα=3,求的值。解析:已知正切的值,求關于正余弦的值,很顯然只能采用公式tanα=。

3. 常數變換

在三角變換中,有時需要將常數化為三角函數值,比較常見的是“1的變換”,常見的變形有1=sin2α+cos2α=sec2α-tan2α=cot2α-

sos2α。例3: 若2k?仔-≤α≤2k?仔+(k∈Z),則+的化簡結果為( )。解析:巧用常數1的變換:1=sin2α+cos2α,則1-2sinαcosα= sin2α+cos2α-2sinαcosα=(sinα-cosα)2,同理,1+2sinαcosα=(sinα+cosα)2,再結合角的范圍開方即可。

4. 冪的變換

降冪是三角函數變換時常用的方法,對次數較高的三角函數公式一般采用降冪處理方法,常用的降冪公式有:二倍角公式的逆用和同角三角函數平方關系式,降冪并非絕對,有時需要升冪,如對無理式常用升冪處理變成有理式。例4:化簡cos8x-sin8x+ sin2x?sin4x。解析:本題中三角函數的次數較高,需要從降冪入手進行化簡,先后用到平方差公式,二倍角公式和sin2α+cos2α =1。

總之,三角變換題目比較靈活,其解法也千變萬化,沒有固定的、唯一的解法。所以,在解題時,應根據題目的特點確定解題方法和變換技巧,再選擇有關公式,千萬不能對公式生搬硬套。如果在學習過程中多歸納、多總結,注意分析題目的結構及發現其規律,則可以結合所學的知識迎刃而解了。

參考文獻:

[1]王紅霞.三角恒等變換的常用方法與技巧[J].新高考,2010(2).

第2篇

1. 概念理解不透徹

例1 在RtABC中,各邊的長度都擴大3倍,那么銳角A的三角函數值( ).

A. 都擴大3倍 B. 都擴大4倍

C. 不能確定 D. 沒有變化

【錯解】A.

【分析】三角形三邊都擴大3倍后的三角形與原三角形相似,所以直角邊與斜邊或直角邊與直角邊的比值不變. 錯解沒有真正理解三角函數的概念.

【正解】D. 三角函數的值是直角邊與斜邊或直角邊與直角邊的比值,大小只與角的度數有關,與邊的大小無關.

2. 忽視求三角函數的限制條件

例2 (2012?江西內江)如圖1,ABC的頂點是正方形網格的格點,則sinA的值為( ).

A. B.

C. D.

【分析】在本題的解答過程中,根據sinA=,部分同學會錯誤地得出sinA=,導致結果與選項不符,要么隨便選一個,降低了正確率,要么開始重新審題,浪費了寶貴的考試時間. 這個錯誤的根源在于沒有真正理解正弦的概念,沒有掌握銳角三角函數的使用條件:在直角三角形中. 因此本題需先尋找∠A所在的直角三角形,而圖中∠A所在的ABC并不是直角三角形,這就需要添加輔助線,構造直角三角形. 如圖1,連接CD,得到CDAB,sinA===.

在斜三角形中求三角函數值時往往需要作高(形內或者形外)構造直角三角形.

3. 忽視分類討論

例3 RtABC的兩條邊分別是6和8,求其最小角的正弦值.

【錯解】6和8是直角三角形的兩邊,斜邊是10,最小角的正弦值是.

【分析】已知條件中并沒有指明6和8是兩條直角邊,所以本題應分兩種情況:

(1) 6和8是兩條直角邊;

(2) 6是直角邊,8是斜邊.

很多同學錯在忽視了第2種情況.

【正解】當6和8是兩條直角邊時,斜邊是10,所以最小角的正弦值是.

當6是直角邊,8是斜邊時,則另一直角邊是=2,所以最小角的正弦值是=. 綜上可知,最小角的正弦值是或.

4. 忽視銳角三角函數的范圍

例4 已知α為銳角,4tan2α-3=0,求tanα.

【錯解】4tan2α-3=0,tan2α=,

tanα=±.

【分析】銳角三角函數值等于相應直角三角形的邊的比,所以tanα>0.

【正解】4tan2α-3=0,tan2α=,tanα=

±. tanα>0,tanα=.

銳角三角函數值都是正數,在求解時不能忘記.

5. 混淆特殊角三角函數值的變化規律

例5 銳角α滿足

A. 30°

C. 45°

【錯解】A.

【分析】正弦值與正切值都隨銳角度數的增大而增大,而余弦值是隨銳角度數的增大而減小. 本題錯在沒有準確掌握特殊角的三角函數,將特殊角的三角函數值張冠李戴,混淆了銳角的正弦值、余弦值的變化規律.

【正解】cos60°=,cos45°=,又余弦值隨銳角度數的增大而減小,cos60°

在銳角范圍內,正弦與正切可以看成是單調遞增函數,即度數大三角函數值就大;而余弦正好相反.

6. 主觀臆斷

例6 在RtABC中,∠C=90°,AB=4,BC=2,則sin=______.

【錯解】sinA===,

sin=.

【分析】本題錯在將∠A的一半的正弦值看作是∠A的正弦的一半,兩者顯然不等. 如sin60°=,而sin30°=. 本題正確的解法是先求出∠A的度數,然后再求其正弦值.

【正解】sinA===,

∠A=60°,∠A=30°. sin=.

求一個角一半的三角函數值,應先求出這個角的度數,然后再求其三角函數值,一定不能用三角函數值的一半作為角的一半的三角函數值.

第3篇

【關鍵詞】 恒等變換 給值求值 給角求值 給值求角 綜合運用

【中圖分類號】G424 【文獻標識碼】 A 【文章編號】 1006-5962(2012)06(a)-0143-02

三角恒等變換是高考的重點之一,要求掌握兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式;高考對本部分內容的考點:一方面是簡單的化簡、求值,以客觀題為主,難度一般不大,有時以向量為載體出現解答題;另一方面本節內容常作為數學工具常融合三角函數,這時要先對三角函數解析式進行化簡、變形,再深入考查三角函數的圖像和性質。還需說明一點的是“幾個三角恒等式”及積化和差、和差化積公式和半角公式不要求記憶和運用,已經淡出高考范圍。本文現從江蘇和全國其他各省近幾年的高考試卷中精選出一些典型考題與大家一起研討高考中這部分內容的命題方向和考查方向,希望能起到一個拋磚引玉的效果。

1 高考命題熱點一:給值求值問題。

【真題再現1】(2011年全國卷理科第14題)已知,,則

【解析】本題考查了同角三角函數的基本關系式與二倍角的正切公式的運用。

由已知得,則,所以。

規律小結:對于給值求值問題,即由給出的某些角的三角函數值求另外一些角的三角函數值,關鍵在于變角,使目標角變換成已知角,若角所在的象限沒有確定則應分情況討論,應注意這部分內容中公式的正用、逆用、變形利用,同時根據題目的結構特征,學會拆角、拼角等技巧,

如,等。

2 高考命題熱點二:給角求值問題。

【真題再現2】(2006年江蘇卷第14題)

【解析】本題考查了切割化弦、輔助角公式

,倍角正弦公式、降冪公式。原式

=

=

=。

規律小結:給角求值問題,一般給出的角都是非特殊角,從表面來看是很難的,但仔細觀察非特殊角與特殊角總有一定的關系。解題時要利用觀察得到的關系,結合三角公式轉化為特殊角并且消去非特殊角的三角函數而得到解,有時還要逆用、變用公式,同時結合輔助角公式和升冪、降冪公式等技巧。

3 高考命題熱點三:給值求角問題。

【真題再現3】(2008年江蘇卷第15題)如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為。(1)求的值;(2)求的值。

【解析】本題融合三角函數的定義,考查兩角和的正切公式、二倍角的正切公式。由條件得,因為,為銳角,所以=,因此

(1),

(2),所以,因,為銳角則,故=

規律小結:給值求角問題,往往通過間接求出這個角的某個三角函數值,再得出這個角的大小,選取某個三角函數值時可按照下列原則:一般已知是角的正切函數值,則選所求角的正切函數值;已知條件是正弦、余弦函數值,則選所求角的正弦、余弦函數值皆可;若所求角的范圍是,則選該角的正弦函數值較好;若所求角的范圍是,則選該角的余弦函數值較好。解決給值求角問題分三步:第一步是求該角的某個三角函數值,第二步是確定該角所在的范圍,第三步是根據角的范圍寫出所求的角。

4 高考命題熱點四:三角恒等變換與其他數學知識的綜合運用問題。

【真題再現4】(2011年重慶卷第16題)設,

,滿足,求函數在上的最大值和最小值。

【解析】本題考查融合了三角函數的單調性和最值的性質,考查誘導公式、二倍角的正弦公式、降冪公式、公式

,又考查綜合分析問題和解決問題的能力。由已知 ,由得,因此

;由及,解得增區間;由及,解得減區間,所以函數在上的最大值是;又因,則函數在上的最小值為。

【真題再現5】(2009年江蘇卷第15題)設向量

,,。

(1)若與垂直,求的值;

(2)求的最大值;(3)若,求證:∥。

【解析】 本題主要考查融合向量的基本概念與向量平行,考查同角三角函數的基本關系式、

二倍角的正弦、兩角和的正弦與余弦公式,考查運算和證明得基本能力、綜合分析問題和解

決問題的能力。

(1)由與垂直,,即

,。

(2)4,

,則的最大值是。

(3)由得,即,所以∥。

規律小結:三角恒等變換與其他數學知識的綜合運用,大多以解答題的形式出現,它一方面融合平面向量知識考查化簡、求值、證明恒等式,學生必須掌握好平面向量知識特別是數量積的運算才能順利解答問題;另一方面三角恒等變換為數學解題工具,它往往融合三角函數考查三角函數的圖像和性質(如周期性、單調性、值域、最值等),這類題突破的關鍵是能正確快速地對三角函數進行化簡,化簡的技巧和原則:①采用遇平方降冪的方法使式子的次數盡量低;②采用輔助角公式、切弦互化使式子的函數種類盡量少;③采用已知角表示未知角使式子的角的種類盡量少;④采用通分等變形技巧使式子結構盡量簡單,同時還要注意角的范圍及三角函數的正負。隨著知識的深入還會更多的接觸到三角恒等變換與解三角形(正弦、余弦定理)融合的題型。

5 高考的考查特點分析和方向預測。

上面就一些高考中的三角恒等變換知識進行了深入的分析,通觀全國各省對三角恒等變換的考查,我們發現有以下特點:

(1)分文理科的地區,兩科對三角恒等變換均有考查;文理試題的題目基本相同,難度區分不大。

(2)區分度問題:三角恒等變換部分不會出非常難的題目,一般都是以容易題、中檔題出現。

(3)題型方面:全國各省在選擇題和填空題中都有所考查,更側重填空題;在解答題中考查但難度不大;全國各省高考大多數都是考一道填空題容易題和一道解答形式的中檔題。

主站蜘蛛池模板: 国产成人视屏 | 在线97| 精品视频久久久久 | 骚骚影院| 亚洲午夜精品久久久久久抢 | 亚洲四虎影视 | 亚洲免费成人网 | 亚洲精品无码不卡 | 日韩欧美自拍 | 最新国产福利 | 偷窥视频网站 | 色老师影院 | 国产亚洲一级精品久久 | 中文字幕精品视频 | 国产精品深夜福利免费观看 | 五月花综合网 | 欧美日韩一二区 | 亚洲美女自拍偷拍 | 制服丝袜自拍偷拍 | 高清欧美日本视频免费观看 | 亚洲乱码在线视频 | 黄色大片国产 | jizz自拍| 黄色资源在线 | 中文无码久久精品 | 在线电影你懂得 | 亚洲国产高清在线 | 欧美在线免费播放 | 看逼影院 | 欧美一级久久久久久久久大 | 亚洲婷婷网 | 国产片欧美片亚洲片久久综合 | 一级片免费网址 | 国色天香社区在线观看免费播放 | 亚洲精品成人久久久影院 | 亚洲综合福利 | 综合五月婷婷 | 九九成人免费视频 | 五月婷婷丁香综合网 | 五月婷婷电影 | 一级在线观看视频 |